
PAID System Design

15-413 Software Engineering
Fall 1998

Carnegie Mellon University
Pittsburgh, PA

Overview

• Goals and System Decomposition

• Concurrency

• Hardware/Software Mapping

• Data Management

• Global Resource Handling

• Software Control Implementation

• Boundary Conditions

• Design Rationale

Michael Smith

Wing Ling Leung

Orly Canlas

Richard Markwart

Luis Alonso

Yun-Ching Lee

Euijung Ra

Ivan Tumanov

Sections 1&2
Goals and Tradeoffs
System Architecture

Presenter:
Architecture Team:

Michael Smith
Luis Alonso
Kent Ma
Georgios Markakis
Anthony Watkins
Andrew Zimdars

Outline

• Business Goals
• Design Goals
• Topology
• System Decomposition
• Conceptual Object

Model

• System Architecture
• Deployment
• Tradeoffs
• Critical Issues
• Summary

Business Goals

• Distribution of all kinds of information
• Low Entry & Administrative Cost
• Easy Development of New

Applications
• Fast Response Time
• Up To Date Information
• Security

Design Goals

• Extensibility
• Scalability
• Location Transparency
• Actuality
• Reliability
• Adaptability

Topology

User Interface

Network

Database

Event Service

Authentication

Learning
Software
Bus

System Decomposition

• Learning
• Network
• User Interface
• Database
• Events
• Authentication

Conceptual Object Model

User Interface Database

All Other
Subsystems

* *

System Architecture

IOUIOU

IOU IOU

IOU IOU

COMET Server
COMET Server

COMET Server

COMET Server
COMET Server

COMET Server

Dealer Server
Dealer Server

Dealer Server

Dealer Server
Dealer Server

Dealer Server

IOU

IOU IOU

IOU IOU

IOU

STAR Network

Dealer Server

COMET Server

Client Client Client Client

Deployment

Dealer’s Client

Database

Authentication

UI
RMI

STAR Network

IOU

Dealer’s Server

Authentication

Network

Database

JDBC

COMET Server

Authentication

Network

Learning

Database

Event Service

JDBC

Tradeoffs

• Database vendor independence vs. JDBC
• Routing efficiency vs. computational

complexity
• Flexibility of Java vs. language immaturity
• Full functionality vs. delivery date
• Security vs. complexity of Smart Card
• Compression and Encryption vs.

Performance

Critical Issues

• Role of the User Interface
Subsystem

• Data Volumes and Traffic
Expectations

• Sample Data

Summary

• System Goals
• Scalability
• Decomposition
• Architecture
• Extensibility

Section 3. Concurrency
Identification

Teams: Learning and Event Service
Presenter: Wing Ling Leung
Members: Jonathan Hsieh

James Lampe

Yun-Ching Lee

Rudy Setiawan

Jonathan Wildstrom

Andrew Zimdars

Learning Team Members:

• Jonathan Hsieh
• James Lampe
• Yun-Ching Lee
• Wing Ling Leung
• Rudy Setiawan
• Jonathan Wildstrom
• Andrew Zimdars

• Eric Stein - Learning Team Coach

Outline

• Subsystem model
• General subsystem concurrency
• Learning and Database concurrency
• Event Service concurrency
• Shared objects
• What it all means from control flow.
• Summary

Layer Model

Concurrency Identification
Overview

• UI initially triggers certain events from
user input, then control is passed
procedurally from subsystem to
subsystem within PAID.

• The nature of the way PAID subsystems
interact as a whole eliminates possible
concurrency problems.

• All PAID subsystems can run
concurrently.

Concurrency Identification
Learning and Database

• Both Learning and Database will run
as individual processes outside of
the regular flow of control passing.
However, since both do not share
objects nor interfere with other
subsystems, neither subsystem
introduces possible concurrency
issues.

Concurrency Identification
Event Service

• Event Service only acts as the channel for
communication among the subsystems.

• Event Service does not interfere with the
workings of other subsystems and therefore
runs concurrently with all other subsystems.

• Although UI may broadcast events of user
actions, users have no direct interaction with
Event Service or any other subsystem
besides UI or Authentication.

Concurrency Identification
Shared Object Issues

• One shared object in
the current design is the
BehaviorFile. It is
updated by Learning
and provides other
subsystems with
intelligent
recommendations.
Database locking
mechanisms will handle
all such concurrent
accesses correctly.

Concurrency Identification
What it all means

• Control is
passed
procedurally for
all user actions
in the PAID
system.

• Subsystems do
not interfere with
with workings of
other
subsystems.

Concurrency Identification
Summary

• No shared objects among
subsystems.

• No common access or security
issues.

• No unresolved concurrency issues.

Section 4
Hardware/Software Mapping

Presenter:
Network Team:

Orly Canlas
Adam Phelps
Will Ross
Barrett Trask
Anthony Watkins

Prototype Specifications

• Development Tool : Voyager 2.0
• Development Platforms : Windows NT &

Linux
• PAID (COMET) Server specification

– Pentium-II 400 MHz with 128 MB RAM

– No additional hardware for compression and encryption

– SMARTCard Readers for login

• Generally available PDA technology is on
the threshold of supporting PAID

• Wireless communication will not be
prototyped this semester

DEVICE # MEMORY / SPACE

COMET 2 128 MB RAM / 6.5 GB
Client Servers 1 128 MB RAM / 6.5 GB
Client Devices 10 128 MB RAM / 6.5 GB

Prototype Devices

Final System Specifications

• Response Time
– 90% of local requests should take less

than 10 seconds
– Aiming for a maximum response time of

1 minute, not including time taken to
connect to the network, for network
requests

• Additional hardware which may be
necessary for data mining performed
by the Learning subsystem

DEVICE #

COMET Servers 40
Client Servers (1 per dealer) 6000
Client Devices 6000 x N

Final System Devices

 vehicle area Updates Size DB Size #vehicles
 ----------- ---------- --------------- ---------- --------
 utility Europe w/o 9.8 MB 43 MB 23000

 utility Germany 9.4 MB 34 MB 15000

 utility others 0.8 MB 2.1 MB 2000

 passenger Europe w/o 2.2 MB 14.5 MB 35000

 passenger Germany 3.8 MB 20 MB 48000

 passenger America (N+S) 1.2 MB 10 MB 21000

 passenger others 0.2 MB 0.9 MB 2000

Typical Updates for FDOK

FILE TYPE DATA GENERATION

Image Files ca. 7MB / week.
Database Updates ca. 3MB / week.

Typical Updates for EPC

Connectivity
STAR Data

COMET 0*

Dealer
Server*

COMET X*

Dealer
Server*

Dealer
Server*

Dealer
Server*

Dealer
Server*

Laptop Desktop PDA

IOU

* Runs Voyager

.

TCP/IP

RMI
Connection via:
@ Ethernet
@ Wireless
@ Modems

Unlabeled connections are made using Voyager

Connectivity

Voyager

• 100% Java distributed computing platform
• Allows any Java class to be remotely enabled
• Integrated native CORBA support

– Can communicate with other CORBA systems
regardless of implementation language

• Messaging features, including parallel multicast and
publish-subscribe

• Multi-layered, scalable architecture
• Mobility

– Locality Optimization
– Disconnected mode

• Supports standard Java security manager system
• Simple and robust (supported by LINUX)

Section 5
Data Management

Presenter:
Network Team:

Richard Markwart
Georgios Markakis
Timothy Shirley
Ivan Tumanov

Outline

• Goals
• Solutions
• Organization of Data
• Error Handling
• Local Data Management
• Future Concerns

Goals

• Data integrity is the paramount goal
– We need to ensure accurate data
– Manual recovery of data is extremely costly, so loss of

data must be prevented

• Location Transparency
– Users/Other systems do not have to know where data

is stored to access it

• Extensibility
– Easy adaptation to new requirements

– Ability to leverage new technologies

– Extensibility requires that the system not be tied to a
particular vendor or platform

Solutions - Extensibility

• Database is viewed externally as an object database
accessed through an API provided by the Data
Management package
– Other subsystems need not concern themselves with the

structure of the database, the database vendor (Oracle,
Sybase, etc.), or even the type of database (relational, object,
etc.) used

– JDBC used internally to hide the details of databases
– Allows the use of any database that supports JDBC

– Allows us to change databases easily
• One database can be used for development and prototyping and

a different one for the actual production system

– This limits us to those database features directly supported by
JDBC

– Any features not supported by JDBC will be implemented
directly by the Data Management system

Solutions - Data Integrity

• Use of a proven database which supports JDBC

– Interbase v. 5 to be used in prototype

• Data Management system will ensure that
proper relationships within database are
maintained

• Recovery procedures to ensure that any data
loss can be repaired quickly

– These are covered in Section 8: Boundary
Conditions

Organization of Data
• Data divided into subsets

– Examples of possible subsets:
• Classes of vehicles (e.g. M-class)

• Location where vehicles were sold (e.g. All vehicles sold in
Germany)

• Date of sale (e.g. all vehicles sold in 1997)

– Each data request requires one or more subsets

– The subsets required to satisfy a request will be determined
by the request itself

• This means that the data management system will know what
parts of a request can be filled locally and what parts must be
obtained from a COMET server before the database is accessed.

• Each COMET and dealer server will store one or more subsets
locally

– Every subset of data will be stored on at least one COMET server

Organization of Data

• Updates to a given subset are only
sent to those servers which store
that subset
– Updates sent to COMET servers via

IOU

– COMET servers forward the IOU
updates to the dealer servers

– If a dealer server is offline when an
update is sent, then that update is
queued by the COMET server, and is
sent when the dealer server goes
online
• Only a limited number of updates can

be queued, so if a dealer server is
offline for too long it will miss updates

STAR
Data

COMET 0 COMET X

Dealer Server

IOU

. . .

IOU IOU

• Each dealer server will register with a particular
COMET server to receive updates for a particular
subset

– That COMET server is responsible for sending updates to
that subset to the dealer server

• This is accomplished by simply forwarding the IOU’s that
the COMET server receives from STAR Data

– A dealer server might register with different
COMET servers for different subsets

• Example: Klaus’s dealer server could receive data on all
vehicles sold in 1996 from “COMET-1”, and data on all
vehicles sold in 1997 from “COMET-2”

• This registration process takes place in the
background, requiring no interaction from the user

Organization of Data

Data Request from COMET Server

• If a data request requires data not stored locally, the
missing data must be obtained from a COMET server

• If the requested data is cached on the local machine,
then the cached copy is used

• If not, then the request is encoded and passed to the
network subsystem for transmission to a COMET
server
– Network is given a list of COMET servers which can fill the request
– Network selects a server and sends the request to the server

– The server carries out the request, and returns the result to the
dealer server

– The results are cached for future use
– If no single COMET server can fill the request, then the data

management system will divide the request into multiple requests,
each of which can be filled on a single COMET server

Error Handling

• Sources of Error:
– Physical damage to server (e.g. accident in dealership,

electrical surge, etc.)

– Failure to obtain updates for long period of time
• A limited number of updates can be queued, but eventually the

queue will overflow, and then updates will be lost

– Possible Solutions:
• Reinstall data set

– This will essentially be the same as reinstalling the system
– This is the required solution in the case of physical damage

and similar errors

• Dedicated IOU Server. This server’s role would be to
simply store all IOU’s generated by STAR Data. This
server could then be contacted to obtain any number of
missing updates

Local Data Management

• Data Management system is also responsible for
exposing the local data storage system (e.g. the local
file system) to other PAID systems

• Current design includes an API for generic data
storage
– More specific methods will be created based on the needs of

other subsystems as those needs become apparent
• Because of the ad hoc nature of these methods, only methods

which can be implemented quickly, reliably, and easily will be
allowed

• The data management system will ensure the platform
independence of any data storage method, and will disallow
methods that cannot be implemented in a platform-independent
way

Future Concerns

• Object Databases
– Emerging technology, but on the threshold of

being robust enough for current use in large
volume applications (such as PAID)

– Might eventually offer significant benefits over
using the relational model exposed by JDBC

• Leveraging Future Capabilities of Smart
Cards/PDA’s
– Expanded capacity of these devices may

allow shifting of of some permanent data onto
them

Database Size Info

• FDOK Data Size
– Updates are a total over 5 weeks

– All size figures are in MB

Vehicle Area Update Size Total Size # Vehicles
Utility Europe w/o 9.8 43 23000
Utility Germany 9.4 31 15000
Utility Others 0.8 2.1 2000

Passenger Europe w/o 2.2 14.5 35000
Passenger Germany 3.8 20 48000
Passenger America (n/s) 1.2 10 21000
Passenger Others 0.2 0.9 2000

• EPC Data Size
Worst Case Scenario:

Receiving All Updates
Database Updates: 3 MB/week
Image Updates: 7 MB/week

Section 6
Global Resource Handling

Presenter:

Authentication Team:
Luis R. Alonso
Pooja Saksena
Qiang Rao
David Garmire
Arnaldo Piccinelli

Outline
• Goals
• The Smart Card
• User Model
• Data Sources
• Network Communication
• Database - Authentication Interaction
• The Dealer’s Server
• Getting Started
• Summary

Goals

• To ensure authorized access to the
material stored in Daimler-Benz
databases.

• To protect the transmissions of sensitive
data over public networks.

User Model

• Authentication subsystem recognizes two
main groups of users
– Administrators - rights to access other user

accounts
• Daimler-Benz manager
• System administrators

– Dealers - rights to access specific data in the
system

• Affiliated dealers
• Non-affiliated dealers
• Mechanics
• Dealership employees

• No access for non-Daimler Benz authorized
users

User Model

AdministratorDealer

User
<<extends>>

<<extends>>

Authentication:

User Model

AdministratorDealer

User<<extends>> <<extends>>

PAID:

Manager

Affiliated
Dealer

Non-Affiliated
Dealer Mechanic

Everyone
else

<<extends>>

Secretary

<<extends>>

<<extends>>

<<extends>> <<extends>>

<<extends>>

System
Administrator

<<extends>>

The Smart Card

• The card will be used as a very long
password.

• Provides a stronger level of security than
regular ID/Password schemes.

• Every authorized user assigned a unique
card from Daimler-Benz.

• Required to use the PAID system.
• Each client computer must have a card

reader attached.

Data Sources

• Authentication will function on all data
sources.

Databases

CDs

Satellite

Network Communication

• Kerberos, a trusted form of
authentication, will be implemented.

• All communication between server and
client will be encrypted.

Clear Text Clear Text

Sender
Receiver

Unsecured Network

Zxcioywegnbdzvohwe’vnb

Database - Authentication Interaction

• Authentication will augment the built-in
security capabilities of the database.
– Provides stronger access control.

The Dealer’s Server

• Data stored in a local store and a cache.
– The cache will be stored to make it difficult to read.

Local Store

Cache

Getting Started

• Administrators add a new user to the
system.
– A unique ID and password are created

– Both are stored on the user’s Smart Card

• When the user receives their card, they
must activate it.
– Card activated by either calling headquarters or

through the network.

• Users will need to have their smart card
inserted into the reader while using the
system.

Summary
• A Smart Card will be used for

authenticating users to the PAID system.
• The security implementation will be media

independent.
• Kerberos will be used to protect

transmissions over networks.
• The database system will work with

authentication to provide secure access
to data.

• Locally, data will be stored in both a local
store and a cache.

Section 7
System Control

Presenter:
Learning Team:

Yun-Ching Lee
Jonathan Hsieh
James Lampe
Wing Ling Leung
Rudy Setiawan
Jonathan Wildstrom
Andrew Zimdars

System Control - Overview

• External control flow between
subsystems

• Concurrent control between
subsystems

• Internal Control within a subsystem
• User interface to the system and

subsystems

External Control Flow

• Authentication
Responds to
authentication requests

• Database
Responds to queries

May initiate network
transfer

• Network
Accepts network
transfer requests from
other subsystems

External Control Flow

• User Interface
Responds to user
inputs
Queries Database

• Events
Receives published
events and relays to
subscribers

• Learning
Responds to Database
queries and suggest
best action

Concurrent Control
• Subsystem

independence
allows
subsystems to
run concurrently

• Ordering of
activities
prevents normal
problems
associated with
concurrency

Internal Control
• Internal control flow accomplished by

procedural calls
• Event loops for all subsystems
• Learning subsystem scheduler spawns

data miner periodically
• User Interface subsystem may spawn

input handler threads as needed
• Database locking solves mutual

exclusion problem during database
updates

User Interface

• User interface for normal user-
system interaction is graphical

• Subsystem interfaces for subsystem
administration may be graphical or
text-based

System Control - Summary

• All subsystems run concurrently and
independently from each other

• Natural sequencing of activities
means normal problems of
concurrency not an issue

Section 8
Boundary Conditions

Presenter:
Learning Team:

Euijung Ra
Reynald Ong
Stephane Zermatten
Brian Woo

Outline

• Initialization
• Termination
• Failure
• Screenshots

Dealer’s Client

Database

Authentication

UI
RMI

STAR Network

IOU

Dealer’s Server

Authentication

Network

Database

JDBC

COMET Server

Authentication

Network

Learning

Database

Event Service

JDBC

Deployment

Initialization of the Whole System

Star

COMET
Server

Dealer
Server

Conversion
Program

CD’s

Daimler-Benz

SmartCard

Comet Server Level

Dealer Server LevelConversion
Program

Start-up of a User Session

UIUser Authentication Database

Inserts Smart Card

OK, StartLoading Screen

Chooses an Item in Main Menu

Authorized?

Yes, Process Request

Return result

Termination at User Level

• Ejection of Smart Card (logout)
• Timeout

Failure

• Network Server Link - reroute (alternate fall
back link)

• Dealer LAN - local autonomy
• Local Database - possible recovery facilities

provided via saved updates (special server)
• Server Database

- Mirroring and replicating combined with hot
incremental backups.
- Should permit continuous availability.

Screenshots

Screenshots

Screenshots

Screenshots

Section 9
Design Rationale

Presenter:
Learning Team:

Ivan Tumanov
Georgios Markakis
Richard Markwart
Timothy Shirley

Outline

• Goals
• Issues
• Alternatives, Criteria and Rationale
• Summary

Goals
• Scalability

– System must scale from prototype to full
PAID implementation and must maintain
growth potential

• Extensibility
– System must be able to take advantage of

new and forthcoming technology

• Performance
– System must meet performance demands

Issues

– How do we make our code portable?
– How do we deliver the prototype on

time?
– How granular should access control

be?
– How do we model the data?
– Which database technology/vendor do

we use?
– How do we make the system

extensible?

Platform Portable Code

• How do we make our code portable?
• Alternatives

– Traditional approach using C++
– Java

• Criteria
– Easy portability across platforms

• Java is clear winner for portability
• Performance penalty

Time to Delivery
• How do we deliver the prototype on

time?
• Alternatives

– Incomplete prototype
– Limit scope of prototype

• Criteria
– Hard deadline of semester length

• Concentrate on key points of
functionality

• No large-scale network activity (6000+
machines), no billing, no migration from
machine to machine

Access Granularity

• How granular should access be?
• Alternatives

– User-based security only
– Record-based security
– Data subset/table based security

• Criteria
– Efficient, Secure access

• Data subset/table based security

Simple Data Model

• How do we model the data?
• Alternatives

– Analysis and redesign of full data model
– Current data model for STARNetwork
– Simple Data Model

• Criteria
– Expediency, efficient prototype

• Simple Data Model to demonstrate IS
requirements, more thorough treatment
later

Database Vendor Independence

• Which database technology/vendor?
• Alternatives

– Specific vendor technology (Oracle,
Sybase)

– Middleware technology (ODBC, JDBC)
– Relational vs. Object Oriented vs. flat file

• Criteria
– Should not be tied to a particular vendor

• JDBC and a data abstraction layer
• Performance Hit

Extensibility
• How do we make the system be

extensible?
• Alternatives

– Use proven, fully developed
technologies

– Use new technology, anticipating
changes

• Criteria
– Don’t limit design to lowest common

denominator of what’s available today

• Design system to take advantage of
current and future technology

Summary
• Design Time Window considered
• We are on the threshold of

– Easier, cheaper machines
– Chip-based Java

• Commonly available PDAs
– Proprietary technology powerful enough to

run PAID exists today
– High performance PDAs are becoming

commonly available
• Design Rationale to support

– Scalability, Extensibility, Performance
– Implemented using good Software

Engineering Principles

PAID System Design

