Teaching Code Review Management
using Branch Based Workflows

Stephan Krusche
Technische Universitat
Minchen
Munich, Germany

krusche@in.tum.de

ABSTRACT

Developing software with high code quality in a university
environment is a challenge for instructors of software engi-
neering capstone courses. Teaching students how to achieve
quality and how to conduct code reviews in projects is often
neglected, although it helps to improve maintainability.

In this paper we describe an informal review technique:
branch based code reviews. Developers realize requirements
in feature branches. Before they integrate source code into
the main codebase, the code is reviewed asynchronously over
the Internet in a quality gate to identify defects, design flaws
and code flaws. Traditionally reviewing has been a task of
the instructor. In our course, we delegate it to students of
the development team. Our hypothesis is that students learn
and adapt best practices from each other, improving code
quality and their coding skills.

We applied this technique in a workflow during a project-
based capstone course over the period of three semesters. 300
students conducted 2939 code reviews with 4665 comments
in 33 projects with industry customers. We evaluated the
workflow in a qualitative study using interviews. Our key
findings are that students do not longer see reviews as a
bureaucratic burden and improve their skills through the
comments of experienced team members. They are convinced
that reviewing code leads to higher code quality and 89 %
want to use the workflow again in future projects.

CCS Concepts

eSoftware and its engineering — Software configura-
tion management and version control systems; Soft-
ware version control; Software development process
management; Agile software development; Software evolu-
tion; Programming teams;

Keywords

Peer Learning, Capstone Course, Code Quality, Branching
Model, Pull Request, Merge Request, Pair Programming,
Distributed Version Control

To appear in the 38th International Conference on Software Engineering -
ICSE, May 2016, Austin, TX, USA.

Mjellma Berisha
Technische Universitat
Mulinchen
Munich, Germany
m.berisha@tum.de

Bernd Bruegge
Technische Universitat
Minchen
Munich, Germany

bruegge@in.tum.de

1. INTRODUCTION

The organization of multi-customer capstone courses with
real industry customers is challenging for instructors. They
often choose toy projects with fabricated problem statements
to minimize the effort. However, we claim such setups do not
motivate the students and result in low learning experience.
We consider large project courses with multiple customers
the most promising way to teach industry relevant software
engineering practices, in particular agile methodologies and
continuous delivery [7]. We conduct such courses since 2008
with up to 100 students, ranging from sophomores to master
students in their final semesters with some years of develop-
ment experience. Students develop mobile applications for
industry clients, e.g. BMW, Siemens and T-Systems, during
one semester [7]. This allows students to experience and
apply agile methodologies with changing requirements and
real deadlines, which in fact leads to real team experience.
Students face typical communication problems and improve
their non technical skills as well.

In 2012, we incorporated continuous delivery into the
capstone course [25]. Its introduction increased the number
of releases significantly [26] and led to many benefits, also
described by others [9]: accelerated time of releases, improved
product quality and customer satisfaction and reduced risk
of release failure. However it also posed new challenges.
The focus on concurrent feature development complicates
collaboration on source code. The client’s expectation for
multiple releases and the inclusion of feedback to improve
the product increments increased the time pressure during
development. This pressure resulted in less attention to
object design and source code quality, which ought to be
important when teaching software engineering: Students
should learn to write maintainable code with high quality.

Before we introduced continuous delivery, we held code
reviews with each team two weeks before the course end.
The course instructors reviewed the code since they were
experienced with the development environment and program-
ming language. Reviewing the codebase and searching for
common design flaws and unfulfilled coding guidelines con-
sumed a lot of time. In retrospectives with students, we
asked for feedback about the code reviews. They stated that
late code reviews led to almost no learning experience. As
the end results of the course projects further improved, more
customers want to build upon the codebase of the projects
and extend the applications. They hire students after the
course to finalize and release the software. In such cases,
further developing the software was challenging and led to
higher maintenance costs due to low code quality. To address

this problem, we introduced a new approach for source code
collaboration and reviews with the following goals:

1. Early stage reviews: The code is reviewed from the
beginning of the project to adapt the fail early principle
and to learn from mistakes as soon as possible.

2. Continuous reviews: Reviews are conducted regu-
larly to guarantee high quality in the main codebase.

3. Review responsibility: Students conduct the review
themselves to improve their learning experience and to
reduce the effort for the instructors.

4. High quality releases: Only reviewed code is inte-
grated to the main codebase and is present in product
increments.

5. Efficient reviews: Each change is only reviewed once
before it is integrated.

6. Fast development process: Reviews do not slow
down the development process and the ability to release
new features quickly.

In this paper we present a branch based code review work-
flow that fulfills these goals. We define the term quality,
present a taxonomy of review techniques and describe the
capstone course in which we applied the workflow, in Section
2. In Section 3, we give an overview of the workflow and
describe benefits and challenges, while Section 4 provides
details for each activity of the workflow. We describe the
approach how we introduced the workflow in a capstone
course with a project-based organization using introduction
courses and interactive tutorials in Section 5. We evaluated
our approach via interviews qualitatively and measured the
usage of the workflow quantitatively. We present observa-
tions and statistics in Section 6, including key findings and
limitations. Section 7 describes similarities and differences
to related work, while Section 8 concludes the paper.

2. BACKGROUND

In this section we define quality, explain our taxonomy
for review techniques shown in Figure 1 and describe our
capstone course briefly. The topic of product quality has
been investigated from various perspectives. Renown quality
experts either take the stance that quality means ”confor-
mance to requirements” [13] or define it relative to the user’s
needs [15] and their "stated or unstated, conscious or merely
sensed” [19] requirements. Another component of quality
includes patterns, which describe generic solutions for re-
curring problems within a particular context using proven
concepts [21]. The pattern solution has consequences in
addition to the benefits. When change occurs and the con-
sequences become “decidedly negative” [6], patterns devolve
into antipatterns. An antipattern has a refactored solution:
a "commonly occurring method in which the antipattern can
be resolved and reengineered into a more beneficial form” [6].
Another knowledge base for recognizing mistakes are code
smells, defined as ”indicators that usually correspond to a
deeper problem in the system” [20].

We define quality as conformance to flexible specifications
that respond to the changes of the user’s needs, in addition
to the usage of corresponding patterns to address nonfunc-
tional requirements if applicable, while avoiding antipatterns.
We consider code quality to be a subclass of quality, focus-
ing on functional requirements, system architecture, design
patterns and coding guidelines, avoiding development an-
tipatterns and code smells. Refactoring becomes essential

for improving quality, as it helps to remove both code smells
and problematic solutions from antipatterns.

2.1 Reviews

The Oxford Dictionary defines review as ”formal assess-
ment of something with the intention of instituting change if
necessary” [35]. This definition also applies to software engi-
neering, where reviews are an important quality assurance
method that check for defects, deviations from development
standards, and other problems in products [10, 31]. Weinberg
states how early software developers, even the likes of von
Neumann and Babbage, understood that correctness was
too difficult a task to master by oneself, and sought their
colleagues’ feedback [38]. These initial reviews were informal
in nature, as there was no defined or agreed upon process.
In fact, well defined reviews eluded research interests well
into the 1970s. The explanation Weinberg [38] offers is that
“the need for reviewing was so obvious to the best program-
mers that they rarely mentioned it in print, while the worst
programmers believed they were so good that their work did
not need reviewing”.

An early approach to reviews found in literature is a for-
mal, well defined and heavyweight process called inspection
[30]. Software inspections were developed under the direc-
tion of Michael Fagan in an effort to improve quality and
increase productivity. Fagan’s inspection process consists of
six activities: planning, overview, preparation, inspection,
rework and follow-up. The first three lay out the foundation:
the author determines what materials are to be inspected
and ensures that they meet predefined entry criteria. Then,
a meeting is scheduled, the participants are chosen and each
is assigned one of the four inspection roles: designer, coder,
tester and moderator. This set of roles ensures that the
material is reviewed from various perspectives to identify
different bugs. [17, 18]

Walkthroughs are lower in formality than inspections [30].
There are different approaches to define the process ranging
from formal ones such as Yourdon’s structured walkthrough
[40] or the IEEE Standard 1028 [24], to informal ones that
focus mainly on the walkthrough meeting [34, 3]. They all
have in common the fact that the author walks an audience of
reviewers step-by-step through the material, while explaining
the purpose and reasoning behind it. There is consensus
on the purpose for walkthroughs to evaluate and improve
the quality of the materials by finding defects, suggesting
(alternative) solutions, checking conformance to standards,
educating the audience on the materials and training new
team members.

We differentiate informal reviews based on their flexibility
to forego formal meetings, to be conducted as-needed and to
tailor the processes by making it more lightweight. Moreover,
planning is limited to choosing the reviewers and asking them
for feedback. They often only include the code author and
a few reviewers with programming or testing background
[30]. The review results need not be explicitly documented.
Listing the remarks or revising the document is in most cases
sufficient. Thus, informal reviews can be simplified down
to a cross reading in an author-reader cycle [34]. Informal
reviews have mainly focused on source code, due to the tools
developed to help conduct code reviews and the techniques
specific to programming. Figure 1 shows a taxonomy for
reviews including variations for informal code reviews.

Review

JAN

Formal Informal
review review
JAN N

. Structured Informal Informal
Inspection walkthrough ‘ ’ walkthrough ‘ code review ‘
[I 1 1
Over the Pair

Email thread
review

Tool assisted
review

shoulder review programming

Commit based

code review code review

Branch based ‘

Figure 1: Review taxonomy

A code review takes into account the architecture and code
guidelines of the particular project. An additional activity
specific to code reviews is the integration needed to merge the
individual code changes with the project’s shared codebase.
The rest of the review process is tailored to apply to source
code. When adopted to incorporate integration, the informal
review process typically includes the following four activities
as shown in Figure 2: preparation, examination, rework, and
integration. Depending on the review type, activities are
skipped to make the process lighter and more flexible.

Preparation Examination Integration

Rework

Figure 2: Activities for informal code reviews
(adapted from [12])

There are variations of informal code reviews as shown in
Figure 1, which Cohen [12] categorizes as: Over-the-Shoulder
Review, E-mail Thread Review, Tool Assisted Review and
Pair Programming. We can distinguish two types of tool as-
sisted reviews: commit based and branch based code reviews.
The difference between them is whether the review is con-
ducted on a single commit or on an entire branch that may
contain multiple commits. This paper describes an informal
review technique for tool assisted reviews that we integrated
into our capstone course: branch based code reviews.

2.2 Capstone Course

We conduct a capstone course each semester. It consists
of 10-12 software projects with industry partners who expect
a functioning application at the end of the course. Typically,
75 % of the students in our course are graduates while 25 %
are undergraduates. The majority of the students study
computer science. The challenge is to work with customers
from industry to solve a real problem meeting real deadlines
in one semester. This setup is ambitious and requires high
effort from students and teaching assistants who prepare and
organize the course. However, such a course lets the students
experience real communication in a real project team with
up to 10 developers, a coach and a project leader.

We describe the course in [8], [25] and [26]. In this paper
we summarize the aspects that influence the code review
workflow. The lifecycle model of the course includes different
workflows such as review management. Before the capstone
course starts, we conduct a one week introduction in which
we teach advanced programming techniques. After that, the
actual course starts with a course-wide kickoff where every-
body gets to know each other. In this meeting, customers

present their project ideas and try to convince students for
their project. After the team allocation the students start
to work on the project. The first milestone is an initial
empty release built on the continuous integration server and
delivered to the customer [25]. The teams develop in an
agile way using the concept of sprints following Rugby [26],
an adapted version of Scrum [33]. Each sprint leads to a
product increment, a mature executable prototype. While
we except each team to deliver at least one release at the end
of each sprint, we motivate students to deliver the current
version of the software to the customer whenever they want
to obtain feedback (event-based).

After two third of the course we synchronize all course
participants in the design review, an important milestone.
In this meeting each team presents its current development
state to all other teams and to all customers. At the end
of the course, all teams present and demonstrate their final
application in another course-wide meeting, the client ac-
ceptance test (CAT). Two instructors organize the course.
Each project team includes a project leader, a coach, the
development team as well as a customer. The project leader
is a teaching assistant, his role is comparable to a scrum
master [33]. The coach is an experienced student, who took
the course as a developer. He learns agile project manage-
ment by observing the project leader and helps the team
with design questions such as the selection of an architectural
style or design patterns.

A group of 6-10 students form the development team,
which is self-organizing, cross-functional and responsible for
development and delivery. The customer is an employee of
the company and takes over the role of the product owner
[33]. Project leaders and coaches report their project status
weekly and discuss important issues. Additionally, we build
cross-project teams consisting of a developer of each project
team, each responsible for a certain topic. More customers
of the course now build upon the codebase of the projects,
therefore code quality became a focus in recent years. We in-
troduced a cross-project team which coordinates code review
related workflows, coding guidelines, the detailed software
architecture and how the architecture is mapped to code.

3. WORKFLOW

In this section we describe a branch based code review
workflow. Using distributed version control systems (VCS),
developers share the same codebase, but separate their work
into branches. While centralized VCSs such as Subversion
are easier to use and faster to learn, distributed VCSs such
as git provide more possibilities, in particular to commit
locally (offline) and to create and merge branches fast and
easily [5]. Lightweight branching allows context switches
and exploratory coding [29]. A branching workflow defines
when new branches are created, merged and deleted. Branch
management is the activity of defining and controlling these
workflows [23, 27, 37]. There are different branching models,
e.g. git-flow [16], which handle feature, bugfix, release and
hotfix branches. We use a simplified version of the git-flow
branching model, shown in Figure 3.

Developers realize requirements on feature branches, use a
development branch for the integration of realized require-
ments and a master branch to store released versions. When
implementing a new feature, developers create a new feature
branch and commit all related changes into the branch. Mean-
while other developers may work on other feature branches

Start Sprint End

Master N -~ N
Release Branch g .
Manager
- Release
i Development I >
Branch >

>
Review
Manager Create Upaaie Merge
Branch \ N Brenci§D) \Branch Branch
& Key
=~ Feature (@) Pull Request

Developer Branches Commits

Figure 3: Branching Model (adapted from [16])

and may have already integrated their changes back into the
development branch. The developers then need to pull these
changes and merge them into their feature branch. When
they have realized the feature, they run unit tests locally and
on the continuous integration server (not shown in Figure 3).
If all test cases pass, they request a merge into the develop-
ment branch to integrate their changes. This merge request,
also called pull request, is supported by several platforms
such as GitHub, BitBucket and Stash. It acts as quality gate
that prevents code with bad quality from being integrated
into the main codebase in the development branch. When a
developer files a pull request, he is requesting that the review
manager accepts and then pulls the changes from the feature
branch into the development branch, therefore the name pull
request is used. We use pull requests to implement a code
review workflow as shown in Figure 4.

Improve source code Comments
according to feedback & Tasks

o Request merge into
development branch

Request
\mprovemems

Rewew
changes
. — Ca_:mmit source code Yes i

in feature branch Reviewer

Merge changes to -
@4_ development branch

Figure 4: Overview of the Code Review Workflow

Pull
Request

-
Developer

Commits in
feature branch

Reviewers address the following questions in the review:

e Design Traceability: Is the code traceable to the
specified system and object design? Does it fulfill design
principles such as low coupling and high cohesion?

e Use of Patterns: Does the code contain design or
architectural patterns? Does it avoid software develop-
ment antipatterns [6]? Does it avoid code smells?

e Maintainability: Does the code adhere to coding
guidelines? Is it easy to read and understand?

e Review History: Does the code address feedback
from previous reviews?

Pull requests show the accumulated changes of the feature
branch. Changes in different commits that neutralize each
other (e.g. the addition of a method that was removed later
on) are not shown. Only if the code meets defined criteria,
reviewers approve the request. Thus, the workflow prevents
feature branches with poor code quality or bad architectural
decisions from being merged with the development branch.
Problems or misunderstandings found by reviewers cause
a comment added directly to the changes. The developer,
who had requested the merge, reads these comments and
improves the code in response commits. The pull request is
updated automatically. When all comments are addressed,

reviewers approve the request. Compared to other collabora-
tion models, this solution for sharing and reviewing commits
creates a streamlined workflow. While git could send noti-
fication e-mails with a simple script, it becomes haphazard
when developers discuss changes and have to rely on e-mail
threads, in particular when response commits are involved.
Pull requests put a discussion platform on top of commits
and branches into a web interface next to the repository.

To improve its visibility, the status of code reviews can be
tightly integrated with the issue tracker. When developers
start to implement a feature, the corresponding issue transi-
tions into the state In Progress. This transition is initiated
automatically when the developer creates a feature branch
for the issue. When he has realized the feature (i.e. resolved
the issue), he opens a merge request to automatically transi-
tion to the state In Review. After the reviewers approved the
merge request and the feature branch was merge, the issue
transitions to Closed. Automatic transitions synchronize the
state of the VCS and the issue tracker. The status of multiple
pull requests can be visualized on a digital taskboard.

The branch based code review workflow has several ad-
vantages: (1) Only changes in the feature branch must be
reviewed. If the change set of a feature branch is small, the
workload for reviewing is small. (2) If an experienced pro-
grammer reviews the code for errors, there will be less defects
in the code. [11] (3) Developers prevent ”broken windows”
in the development branch, if they use this workflow from
the beginning: "Don’t leave broken windows (bad designs,
wrong decisions, or poor code) unrepaired. Fix each one as
soon as it is discovered.” [22] Conducting code reviews avoids
that bad design and poor code are distributed to the whole
development team, and is potentially being reused in other
places in the system. This alleviates the risks of the broken
window theory in programming. (4) The workflow increases
collaboration and knowledge transfer between developers,
because pull requests facilitate conversations about actual
source code. This improves peer learning [4]. Inexperienced
developers can learn best practices and coding guidelines
while doing asynchronous pair programming over the Inter-
net. [39] This is especially helpful for balanced teams with
beginners and advanced programmers. While pull requests
allow for asynchronous pair programming, developers should
also build pairs for synchronous pair programming [2].

However the workflow also poses challenges. If there are
too few experienced developers who have to review many
pull requests, they shortly become a bottleneck for the de-
velopment progress. When features are too large, developers
need several days or weeks to finish them. The change set
to be reviewed becomes large so that reviewing the code
needs a lot of time. In addition, improving the code upon the
review comments takes more time and might delay the devel-
opment process. In such situations, the likelihood increases,
that merge conflicts occur, in particular when parallel fea-
ture branches have overlapping changes. To alleviate such
problems, features should be small. Additionally, pull re-
quests can be integrated into a continuous integration system.
When a pull request is created, the integration server detects
it, checks if a merge is possible without conflicts and if the
merged code builds and all tests pass.

4. WORKFLOW DETAILS

In this section we present more details about each activity
of the workflow according to Figure 2. The workflow starts

when the developer creates the source branch, as shown in
Figure 5. Next comes the development work for the feature.
Both during the implementation and throughout the rest of
the workflow, the developer should be aware of new, relevant
commits in the development branch and pull them to update
his branch, as shown in Figure 3. The merge may result in
conflicts, which are resolved locally before the workflow is
continued. Once the developer finished the work, he commits
to the branch, resulting in one or more initial commits,
depending on the feature size. Typically, the commits are
immediately pushed to the remote repository for storage,
however, this step can be delayed until the merge request.

| Create source Develop Commit code in Initial

| branch feature/bug fix source branch Commits

|

! ‘ Pl [Choose revieviers Request merge
} Request & add description branch

Examination

Figure 5: Workflow for the preparation activity

<

When the developer implemented the feature, he requests
a merge into the development branch. For the pull request to
be created, the developer needs to select reviewers and add a
brief description of the changes and their purpose. At least
one experienced reviewer that is familiar with the purpose
of the changes should be included among the participants.
Nevertheless, the pull request is open to the rest of the team,
and any other member that would like to review the code,
learn how to conduct reviews or simply is curious can join
and contribute to the review as well. Once the developer has
completed the above steps, the examination activity begins
that is shown in Figure 6 following either preparation or
rework. The first point of interest is ensuring that the code
was able to build successfully and passed the test cases. If
either the built or a test case failed, the developer is notified
and is expected to fix the code and update the pull request
before the reviewers can examine it. Usually, this step is
automated by using a continuous integration server and an
integrated notification mechanism such as e-mail.

Integration
Comments, tasks Request
& feedback Improvement

Update guidelines
with common
occuring issues

Post notification
to developer

Review
changes

Figure 6: Workflow for the examination activity

If the build is successful and all test cases pass, the actual
review takes place. The assigned reviewers are automatically
notified about the pending request and can follow a link to
begin reviewing. Their goal is to find anomalies by answer-
ing the questions detailed in Section 3. Since branch based
reviews are asynchronous over the Internet, the reviewers
conduct the examination independently of each other. When
an anomaly is identified, it is documented using comments or
tasks, which directly reference the code. Comments support
discussion threads, whereas tasks are used to track anomalies

that must be refactored. If the examination follows the prepa-
ration activity, the reviewers have to examine all changes,
however, if it comes after rework, they focus on the detected
anomalies. The reviewers check if their prior feedback was
implemented correctly and ensure that no other problems
were introduced. The code guidelines are an essential source
for the reviewers. A good opportunity to continuously im-
prove and keep them relevant, is to update the document
with common anomalies found after each review.

Once a reviewer has examined the changes, he decides
whether the source code fulfills the team’s quality standards.
In the best case, the merge request is directly approved and
the workflow proceeds to integration. However, if the re-
viewer believes that code quality should be further improved
through rework, he requests improvements by noting the
anomalies in comments and tasks. The third possibility is to
outright decline the pull request, either because the developer
is unwilling or incapable of implementing the feedback, or
because the code quality is so poor that the improvement
cost outweighs the benefit of having the work. Declined pull
requests, though, are very rare and should be treated as an
indicator for a bigger problem concerning work allocation or
lack of motivation. The more common case are recoverable
pull requests, where with one or more improvement cycles of
examination and follow-up, the code reaches a state where it
satisfies the quality requirements for approval.

The developer is immediately notified about incoming feed-
back. Ideally, he first responds to comments that require
clarification or discussion threads about possible or alterna-
tive solutions. Once these are resolved, he starts the rework
activity shown in Figure 7. He then improves his source
code according to the feedback documented in tasks and
comments. This includes fixing bugs, adjusting coding style
to guidelines and restructuring the design to fit to the system
architecture. If antipatterns or code smells were detected,
the developer must implement refactored solutions or refac-
tor the code smells. The second case for entering rework is
when the pull request has a build or test case failure. In this
context, the developer needs to find and fix the problems
before the reviewers have a chance to examine his changes.

Improve source

Comnenis code according i |
Examination to feedback Commit code in Response 4
source branch Commits §
Post notification Fix build/test
to developer case issue Developer

Pul | (“Update pull). Push changes
Request [< request < to remote

Figure 7: Workflow for the rework activity

Rework results in changes that are committed as a re-
sponse commit. The commit must be pushed to the remote
repository in order to automatically update the pull request
with the new changes. Typically, the tool used to conduct
the review is integrated with the VCS, so that the commit
automatically triggers the update, which alerts the reviewers
to return back to the pull request and conduct the examina-
tion activity. This examination-review cycle is repeated until
the request is approved, at which point the review enters the
last step in the workflow. The work that remains for the
integration activity, is for the developer to merge the changes
into the development branch, as shown in Figure 8.

Possible impediments that could arise from the merge at-
tempt are merge conflicts. They are present when the source
branch has diverged from the destination branch and the

(T

|
‘ |
| Merge changes Handle v
| branch conflict = |
|
|

Figure 8: Workflow for the integration activity

two contain different changes in same areas. To resolve the
conflict, the developer can either use tools designed for this
purpose, or, in the worst case, do it manually. The actual
resolution involves choosing which version of the changes to
keep: the developer’s changes, the ones in the destination
branch or a combination thereof. If the merge conflict in-
volves large changes to the codebase, the reviewer should
examine the code again. Once all conflicts are resolved, the
code can be successfully merged into the development branch.
The developer can then delete the source branch to clean up
the repository, which marks the end of the review workflow.

5. TEACHING APPROACH

In this section we explain three ways to teach the workflow
described in Section 3 to students in our capstone course.

5.1 Introduction Course

Before the kickoff of the capstone course, all students
attend an introduction course, in which we teach the pro-
gramming language, common design patterns and important
frameworks of the development platform. The example code
of the introduction course is often reused by the students in
their projects. Therefore, we check all materials against a
comprehensive set of code guidelines. During the introduc-
tion course, students learn the branching model and use the
coding guidelines. They develop the solution to programming
exercises in feature branches in their own repository and open
a pull request to submit their solution. Tutors review and
approve the pull request, if the solution is correct. Otherwise,
if anomalies or errors occur, they write comments to ask for
changes. If the tutors finally accept the solution, the student
merges the changes. With this method the students apply
the code review workflow more than 10 times during the
introduction course and incorporate it in an organic manner.

5.2 Cross-Project Team

The cross-project review team is led by the review co-
ordinator, an experienced programmer who also has good
communication skills, e.g. a teaching assistant. One member
of each project team is part of this cross-project team and
has the role of the review manager which is responsible for
all activities to achieve high code quality. Their first meet-
ing is early after the course started and the infrastructure
has been setup. After becoming acquainted, the review co-
ordinator explains goals and responsibilities of the review
team. He gives a tutorial about branch management and
the review workflow using an example project and shows
all steps from the developer and reviewer perspectives. The
review coordinator is the main contact person for the review
managers. He needs technical expertise to understand the
process and common errors, e.g. how to fix a merge conflict.
He also needs skills to communicate with the team of review
managers and to track the status of all projects.

The review coordinator also introduces the coding guide-
lines and asks the review managers to discuss and agree
upon them with their development team. He takes care
that all review managers understand and apply the workflow

in their teams. The review team meets biweekly to share
knowledge about tools and workflows, to synchronize their
understanding and to discuss and resolve potential issues
with workflows and tools. The coordinator uses different
techniques to further build knowledge in the review team.
He assigns small challenges to review managers such as to
present best practices, code smells or antipatterns that were
reviewed within their team. Another task is to describe how
the development team actually uses the workflow and why
they might differ from the presented one. This facilitates
that review managers take responsibility for their role and
internalize the knowledge required for peer learning with the
rest of the team. The review coordinator regularly checks
whether the review managers fulfill the mentioned tasks by
talking to coaches and project leaders.

5.3 Interactive Tutorials

The capstone course includes a weekly course-wide meet-
ing for milestone events like kickoff, design review and CAT,
and is also used in between to introduce workflows and best
practices, and to reflect over the current status. In these
course-wide meetings, the instructor teaches software and
usability engineering concepts to the students in short live
tutorials, e.g. meeting management, agile methods or proto-
typing. The review coordinator uses one of these meetings to
hold an interactive tutorial about review management and
the code review workflow. The main goal of the tutorial is
to create a common understanding with all students.

He explains version control, branch management and dis-
cusses important best practices such as having small commits,
using meaningful commit messages or only committing if the
code compiles without errors. Then he shows how to use pull
requests to conduct code reviews in an asynchronous way and
introduces best practices such as short branch lifetimes and
how to handle non-mergeable files. He also introduces coding
guidelines, typical code smells and antipattern as well as
examples for refactored solutions. He intermixes theory with
practical exercises where the students build pairs to try out
the concepts: one student is the developer and another one
is the reviewer. They apply the whole workflow as described
in Section 3 and then switch the roles to apply it again from
the other perspective.

6. EVALUATION

In this section we present the results of our evaluation
and the observations in the 2014, 2014-15 and 2015 capstone
course labeled 10514, 1051415 and i0S15, respectively. After
the CAT, we conducted an online survey with the partic-
ipants of i0S14. All students, including review managers
and coaches, were invited to answer a 20-minute question-
naire. It contained 33 questions and was not mandatory. We
received 81 full responses out of 90 invitations. We used
anonymous tokens that allowed us to send e-mail reminders
only to students who did not fill out the survey. Additionally,
we conducted personal interviews with participants of all
three courses. We investigated the following hypotheses:
(H1) Review Practice: Students understand, appreciate

and apply the review workflow.

(H2) Peer Learning: Students learn and adapt best prac-
tices from each other, improving their code quality and
coding skills.

(H3) Handling Workflow Problems: Students encounter
and can handle typical workflow problems.

To answer H1, we counted pull requests, comments, etc.,
looked at the review interval and asked whether the students
are convinced about the workflow. With respect to H2, we
investigated what students learn from one another and if
this knowledge leads to quality improvements. The workflow
may pose challenges such as merge conflicts due to parallel
feature development in different branches. Therefore, we
asked about the students’ experience with the problem and
how they were able to handle it (H3). We present findings
for each hypothesis and discuss threats to validity.

6.1 Review Practice

Table 1 contains the number of repositories, pull requests,
comments, commits for the three courses. Additionally, we
computed the interval (i.e. the amount of time in hours)
for each pull request, from when it was created until it
was merged. We also included the average measures per
pull request as well as standard deviation and coefficient of
variation to compare the results. We filtered out declined
reviews and did not count merge commits. In iOS14, the
teams created and approved 1053 pull requests, on average
96 pull requests per team. In i0S1415, the average per team
was 74, while in i0S15 it was 97. This indicates the teams’
frequent use of the review workflow. There were differences
between teams, which we attribute to the following three
reasons: (1) The number of pull requests depends on the
partition of requirements into sprint backlog items such as
features; some teams came up with a high amount of small
features, while others created a small amount of large features.
(2) Some teams also used hotfix branches for each bug, which
then consisted of only a very small amount of changes. (3)
A few teams had a larger codebase than others.

Some teams made little use of comments in pull requests
because they worked together in the same room or used other
channels to communicate the feedback. Other teams used
comments quite often when they worked distributed. Most
teams had a similar number of commits per pull request
(between three and five). Only a few teams had a lot more
commits per pull request since they used larger features that
needed more code changes. Then, multiple features branches
were open for a long time because the developers needed
more time to actually implement and review the functionality
of the feature. This in turn leads to longer review intervals
and a higher chance for merge conflicts, although most teams
managed to review and approve pull requests within less
than one day on average. Only a few teams needed more
time due to fewer reviewers or larger amounts of changes.

Figure 9 depicts the pull request interval throughout the
courses. One observation is that pull requests appear earlier
in i0S15. This is the result of introducing the workflow
during the introduction course in 2015, which occurs much
earlier than the weekly course-wide meetings that were used
to present pull requests in the previous iterations. The
early introduction and organic manner of incorporating the
workflow in iOS15 enabled the students to start using pull
requests sooner than their peers previously had. The graph
in Figure 9 indicates that the average pull request interval
is shortened in the time leading to design review and CAT.
One explanation is that reviewers got used to the workflow
over time and therefore conducted reviews quicker; however,
the increase in review interval after the design review, when
there was again more time for reviewing and less pressure
to present features, shows additional factors were involved.

From the interviews we found that the students used more
pair and team programming before the milestones. In such
cases, they already reviewed the code before opening the pull
request and therefore closed it quickly without comments.
A few students reported that milestones are a difficult time
to maintain the balance between reviewing and finishing
features that they want to present in a demo. Some teams
responded to the pressure by prioritizing implementation
and therefore conducing less thorough reviews. This way,
they both saved time and did not block developers working
on intersecting parts of the codebase.

w
R 8

Design Review

0 /\ Client Acceptance Test

Kickoff Meeting

B e NN

)
f
/
/

Average Interval in Hours

o «

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
—i0s14 051415 i0s15 Weeks

Figure 9: Average pull request interval in hours per
week

Figure 10 shows the average number of comments per
pull request. It follows a trend similar to the time interval.
Most of the feedback was given at the early stages of the
pull request introduction, when the developers were only
beginning to learn about code quality and arguably made
more mistakes. However, the increase in comments after
the design review indicates that the lack of feedback did not
only stem from the developers learning how to write better
quality code. Team programming and time pressure before
milestones led to less thorough reviews in the pull requests,
with lower number of comments.

Design Review

Kickoff Meeting

Client Acceptance Test

Average # Comments
ok N w & u

—i0S14 i0S1415 i0S15 Weeks

Figure 10: Average number of comments in pull re-
quests per week

Further evidence that the students used and appreciated
the workflow comes from the online survey. When asked
whether the branching model helps them to map sprint back-
log items to branches in version control, 85 % of the students
agreed. Moreover, a majority of 98 % of the students thinks
that the branching model supported development with mul-
tiple persons on the shared codebase. In conclusion, we
have found supporting evidence for H1 that the review work-
flow was understood and valued enough to be adopted and
regularly used throughout the course, notwithstanding the
pressure during milestones, which affected the usage.

6.2 Peer Learning

Figure 11 shows interview findings from participants who
ranked their motivation for conducting reviews and the
achieved benefits they perceived. Ensuring architecture com-
pliance and improving code readability and maintainability
were the main motivators, and likewise, the most prominent
benefits of branch based reviews. The interviewees agreed
that reviews had a bigger impact with sharing system knowl-
edge among the team than initially believed. Educating

. Pull Comments Commits Interval
Course | # Projects | 7 Repos Rﬁquests # Javg| sd cv | # Javg| sd cv | avg sd cv
i0OS14 11 35 1053 1569 (1,49 | £ 4,03 2,70 | 4402 | 4,18 | £ 6,05 | 1,45 [11,19 | £ 22,49 2,01
1051415 11 32 819 1497 (1,83 | £ 3,93 (2,15(3472 4,24 |+ 5,37 |1,27[16,62 | £ 27,87 | 1,68
i0S15 11 33 1067 1599 (1,50 | £ 5,03 | 3,35 | 4105 | 3,85 | £ 5,37 (1,40 | 12,88 | £ 25,36 | 1,97

Table 1: Comparison of measurements regarding code review workflow usage of students in three capstone
courses (avg = average per pull request, sd = standard deviation, cv = coefficient of variation)

novice developers about best practices and quality standards
was also a significant motivator and benefit. While the stu-
dents did find defects using reviews, it was not much more
than they had expected.

Peer Learning

High

System Knowledge
Transfer

Readability and

Maintainability —Motivation for reviewing

——Achieved review benefit

Architecture/Structure
Compliance

Finding Defects
Figure 11: The students’ view on motivations and
benefits of reviews

Another focus in our evaluation was the students’ learning
experience. Figure 12 shows that more than two thirds of the
students could improve the code quality of their own code
with the feedback of experienced developers. The students
reported about mentoring relationships between experienced
and inexperienced developers where both learned something.

M Yes Uncertain No
100 %

80 % 68 %

60 %

40 %

20% 15 %
0%

17 %

Figure 12: Comments by reviewers helped me to
improve my code quality

We received the same results when we asked whether the
code review workflow helped the team sustain good code
quality in the development branch. As shown in Figure 13 two
thirds think that the workflow had an important impact in
preventing the negative effects of the broken window theory.

100 %l Yes Uncertain No
80% | 67 %
60 %

40 % 259

20 % 9%

0%

Figure 13: My team was able to maintain high qual-
ity code in the main codebase

We asked the students whether they would use the workflow
again in future projects. Only one student replied that he
would not do so. Figure 14 shows that 43 % of the students
definitely want to use the workflow again, 27 % very likely
and 19 % likely. Given the above, we conclude that students
adapted programming best practices and improved their

skills resulting in better quality code, which supports our
peer learning hypothesis H2. Moreover, they learned about
different parts of the system from reviewing their peers.

H Definitely M Very Likely
100 %
80 %

0% 1 439

40 % 27 % 19 %
20 % 2 9
0%

Figure 14: Would you use the workflow again in a
future project?

Likely Maybe No

6.3 Handling Workflow Problems

We asked whether students encountered specific problems
while using the workflow, e.g. if they encountered simple or
complex merge conflicts or whether the build in the contin-
uous integration server broke. Figure 15 shows that simple
merge conflicts occurred quite often; students reported that
they could easily resolve them. Complex merge conflicts such
as when multiple developers worked on non-mergeable files,
happened less often, nonetheless, three out of four students
experienced them. Some students had problems resolving
complex merge conflicts and needed help from experienced
team members. We also asked them how to prevent such
errors and some common answers were to improve team
communication, to only change non-mergeable files on the
development branch and to pull changes from development
into feature branches more often. One important answer was
that they should try to minimize the lifetime of branches.

... simple merge conflicts that could be solved easily
... complex merge conflicts that required a lot of work to be fixed

W ... after applying a pull request, the build broke
100 %

80 %

60 % 4 %

b 8% 54 %
40 % 40 %

27 % 26% 28% p59,
20 % 20 % 20 %
7 % o
0% 0% . 5%
Often Sometimes Once Never

Figure 15: How often did you encounter...?

One problem that we identified in the interviews with some
of the review managers, was that the code review workflow
needs additional time and can slow down the team’s progress.
This occurs especially right before a sprint review meeting
with the customer or a demo for the design review or CAT. In
such situations, some teams did not thoroughly review all pull
requests. However, Figure 16 shows that only 22 % of the stu-
dents believe the workflow affected the team’s progress. Our
findings support H3: students encounter problems and can

handle them with the exception of complex merge conflicts
where they need help from experienced developers.

B Yes Uncertain No
100 %

80 %
60 %
40 %
20 %

0%

42 % 36 %
22 %

Figure 16: The workflow slowed down the progress
of my team

6.4 Threats to Validity

There are threats to the validity in the methodology of
our evaluation that we discuss briefly. First, we might have
the problem of selection bias. While most of the course
participants took part in the online questionnaire, some
teams used the workflow more frequently than others because
of more experienced students. To alleviate selection bias we
asked students in which team they worked. We have at least
five responses from each team, so the threat of selection bias
is small. Additionally we observed the same results in the
interviews where interviewees agreed with our findings.

A problem might be that participants gave answers which
do not reflect their work practice, because they knew we
would publish the results. This threat was addressed by
guaranteeing anonymity. We know that our findings might
not be generalizable to industry projects because of the
different setup at university. However, we think our course
is similar to a project based organization in industry so that
most results would remain valid. The amount of code lines
changed in a pull request is not shown. It does not reflect
the size of the code changes as developers added frameworks,
used automatic code formatting and refactored code.

A limitation is that we did not compute the number of
response commits after the review. It would be interesting to
evaluate how many review comments developers addressed
in response commits. We were not able to measure the
actual code quality and how much it improved in contrast to
previous courses. We reviewed random samples and observed
that it increased. Our evaluation focused on the benefits
through the process aspects of the workflow and it was not
our aim to measure code quality in a quantitative manner.

7. RELATED WORK

In this section, we review related work. We discuss similari-
ties and differences to other code reviews studies and describe
the use of pull requests in the open source community.

7.1 Code Review Studies

Our results regarding review motivation differ from publi-
cations such as [1] where finding defects ranks first. However,
[1] and [31] come to the same conclusion that improving
readability and maintainability counts for the majority of
the feedback in reviews. The studies also confirm our findings
that reviewing increases exposure and enables developers to
learn more about the system [1, 31]. There is also agree-
ment that reviewing enables teaching novice developers about
quality and best practices [1]. Similarly, the interviews high-
lighted that the mere knowledge of code being reviewed and
criticized leads to developers paying extra attention to qual-

ity and therefore writing better code. Developers reported a
remaining need for direct communicate during reviews [1].
Developers need incentives for reviews, otherwise they do
not like to spend time on reviewing code. Team members
who develop many features and fix a lot of bugs are seen
as heroes, reviewers do not get noticed so much. [1] Teams
should be able to adapt the process to their own needs, e.g. to
allow certain changes to happen on the development branch
or time-critical bugfixes not to be reviewed. In contrast to
formal reviews, modern code review approaches involve less
formal practices [12, 32]. Informal practices enable teams
to adapt code reviews to their needs and to switch to other
forms such as over-the-shoulder reviews or pair programming.

7.2 Pull Requests in Open Source Community

In open source communities such as GitHub, repository
owners manage incoming code contributions using pull re-
quests. Developers without write access fork the repository
and implement their contribution in their fork. If they want
to merge back their contribution, they create a pull request
including their changes. The owner of the source repository
can review the changes and ask for improvements before ac-
cepting the change. Publications show that pull requests are
an important part of the social coding community in GitHub
and improve transparency, learning and collaboration in open
software repositories [14].

Tsay and his colleagues present a study on open source
contribution in GitHub that evaluates pull requests, which
are the primary method for contributing code [36]. They
analyzed the association of technical and social measures
with the likelihood of acceptance. They found that repository
owners use information about the technical contribution and
the personal connection to the submitter when reviewing.
In some cases, multiple rounds of reviewing and comments
were necessary to establish a shared understanding. This is
in line with Marlow who found that uncertain pull requests
need negotiation and explanation [28]. Pull requests with
many comments tend to signal controversy and were less
likely accepted by repository owners [14]. Popular projects
were more conservative in accepting pull requests because it
poses a higher risk for the code users if defects get through.

8. CONCLUSION

We described a branched based workflow for code review
management that we successfully introduced in a capstone
course with 100 students and industry clients. The work-
flow fulfills its main goals: code is reviewed regularly from
the beginning and students learn to peer review themselves
asynchronously over the Internet. It ensures that only re-
viewed code which meets quality standards, including design
patterns and avoiding development anti patterns and code
smells, is present in the main codebase. This prevents the
broken window theory in programming without slowing down
the development process.

The course instructor teaches knowledge about conducting
reviews using different approaches: an introduction course, a
cross-project review team and interactive tutorials. The com-
bination of these approaches ensures that knowledge about
required workflows, tools and guidelines is distributed to all
participants in a project-based organization. We evaluated
the review practice, peer learning and how students handle
workflow problems in an online questionnaire and personal
interviews. Our findings indicate that students understand

workflows and tools, appreciate their benefits and that code
quality increases. They thoroughly use the review workflow
during the whole semester expect before important mile-
stones where they concentrate on getting features finished for
the live demo. In the future, we want to introduce additional
team reviews after milestones and evaluate their benefits.
The separation of requirements into small features is im-
portant because large features would require too much time
to be realized. This would lead to longer review intervals
slowing down the development process and increasing the
likelihood of merge conflicts. It remains future work to find
the right size of features as it can be hard to break down
large and complex features into smaller ones. Code review
workflows in capstone courses decrease the effort of the in-
structor and increase the learning experience of students.
In one semester, 100 students managed to conduct 1000
code reviews with 1500 feedback comments contributing to a
higher code quality than in the previous courses. 89 % of the
students want to use the workflows again in future projects.

9. REFERENCES

[1] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of
ICSE, pages 712-721. IEEE, 2013.

[2] K. Beck and C. Andres. Eztreme programming
explained: embrace change. Addison-Wesley, 2004.

[3] B. Blum. Software engineering: a holistic view. Oxford
University Press, 1992.

[4] D. Boud, R. Cohen, and J. Sampson. Peer learning in
higher education: Learning from and with each other.
Routledge, 2014.

[5] C. Brindescu et al. How Do Centralized and
Distributed Version Control Systems Impact Software
Changes? In Proceedings of ICSE, 2014.

[6] W. Brown et al. AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. Wiley, 1998.

[7] B. Bruegge, S. Krusche, and L. Alperowitz. Software
engineering project courses with industrial clients.
ACM Transactions on Computing Education, 2015.

[8] B. Bruegge, S. Krusche, and M. Wagner. Teaching
tornado: from communication models to releases. In
Proceedings of Educators’ Symposium. ACM, 2012.

[9] L. Chen. Continuous delivery: Huge benefits, but
challenges too. Software, IEEE, 32(2):50-54, 2015.

[10] M. Ciolkowski, O. Laitenberger, and S. Biffl. Software
reviews: The state of the practice. IEEE Software,
20(6):46-51, 2003.

[11] A. Cockburn and L. Williams. The costs and benefits
of pair programming. Eztreme programming examined,
2000.

[12] J. Cohen, E. Brown, B. DuRette, and S. Teleki. Best
kept secrets of peer code review. Smart Bear, 2006.

[13] P. Crosby. Quality is free: The art of making quality
certasn. Signet, 1980.

[14] L. Dabbish et al. Social coding in github: transparency
and collaboration in an open software repository. In
Proceedings of CSCW. ACM, 2012.

[15] W. Demming. Out of the crisis: Quality productivity
and competitive position, 1986.

[16] V. Driessen. A successful git branching model, 2010.
Retrieved January 08, 2016 from http:

/ /nvie.com/posts/a-successful-git-branching-model.

[17] M. Fagan. Design and code inspections to reduce errors
in program development. IBM Journal of Research and
Development, 15(3):182, 1976.

[18] M. Fagan. Advances in software inspections. IEEFE
Transactions on Software Engineering, 12(7):744-751,
1986.

[19] A. Feigenbaum. Total quality management. Wiley, 2002.

[20] M. Fowler. Refactoring: improving the design of
ezisting code. Pearson, 1999.

[21] E. Gamma et al. Design patterns: elements of reusable
object-oriented software. Pearson, 1994.

[22] A. Hunt and D. Thomas. The pragmatic programmer:
from journeyman to master. Addison-Wesley
Professional, 2000.

[23] IEEE. Guide to Software Configuration Management.
Std 1042-1987, 1988.

[24] IEEE. Standard for Software Reviews and Audits
(Standard 1028-2008), Aug 2008.

[25] S. Krusche and L. Alperowitz. Introduction of
Continuous Delivery in Multi-Customer Project
Courses. In Proceedings of ICSE. IEEE, 2014.

[26] S. Krusche et al. Rugby: An Agile Process Model based
on Continuous Delivery. In Proceedings of the 1st
International Workshop on RCoSE. ACM, 2014.

[27] A. Leon. A Guide to software configuration
management. Artech House, Inc., 2000.

[28] J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: activity traces
and personal profiles in github. In Proceedings of
CSCW, pages 117-128. ACM, 2013.

[29] K. Muslu et al. Transition from Centralized to
Decentralized Version Control Systems: A Case Study
on Reasons, Barriers, and Outcomes. In Proceedings of
ICSE, 2014.

[30] R. Patton. Software Testing. Sams, 2005.

[31] P. Rigby and C. Bird. Convergent contemporary
software peer review practices. In Proceedings of the
Joint Meeting on FSE, pages 202—212. ACM, 2013.

[32] P. Rigby et al. Contemporary peer review in action:
Lessons from open source development. IEEE,
29(6):56-61, 2012.

[33] K. Schwaber and M. Beedle. Agile software
development with Scrum. Prentice Hall, 2002.

[34] A. Spillner, T. Linz, and H. Schaefer. Software testing
foundations: a study guide for the certified tester exam.
Rocky Nook, 2014.

[35] A. Stevenson. Ozford Dictionary of English. OUP
Oxford, 2010.

[36] J. Tsay et al. Influence of social and technical factors
for evaluating contribution in github. In Proceedings of
ICSE, pages 356-366. ACM, 2014.

[37] C. Walrad and D. Strom. The Importance of Branching
Models in SCM. Computing Practices, 2002.

[38] G. Weinberg and D. Freedman. Reviews, walkthroughs,
and inspections. IEEE Transactions on Software
Engineering, SE-10(1):68-72, 1984.

[39] L. Williams and R. Kessler. Pair programming
tlluminated. Addison-Wesley, 2002.

[40] E. Yourdon. Structured walkthroughs. Prentice Hall,
1979.

