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Abstract about design decisions when editing the code. Addition-

ally, separate evolution of the two kinds of artifacts sooner
Software engineering is hampered by the fact that saft-later leads to them becoming inconsistent. Then how
ware systems quickly become so complex that they a@n we integrate code and model? There are two schools
hard to understand, evolve and maintain. Closer integodthought that answer this question: First, the “the model
tion of code and model helps, because the model serveisabe code” faction consists of people who like the Uni-
a map to the code and the code fills in the details for thied Modeling Language UML or more generally, model-
model. Simultaneously, one avoids consistency probleritg. Model-Driven Architecturd MDA, [9)) is their way
TUBE, a programming language and an integrated enwoi-producing UML models that can be executed. Second,
ronment, achieves this integration by ustogic mapgo the “the code is the model” faction is represented by var-
manage both code and data (including meta-data and nioms kinds of agile development metho@s{treme Pro-
code artifacts). This enhanced expressiveness is compglamming(XP, [3]) being the most popular example. This
mented by an interactive way of system construction thgtibup wants to make the source code so expressive that
cannot be achieved by static programming languages. it clearly represents the concepts that have been imple-

mented in it. Both schools have their problems: in MDA,

_ . a lot of complexity is hidden in generators. When having
Keywords: Software Design and Development, Sofig, aqapt them, one is back to writing regular source code,

ware Development, Prototype-Based Object-Orientgfly manner that is much more difficult than regular cod-

Programming, Model Integration ing. In XP, the expressiveness of normal source code is
rarely enough for clearly displaying all of the modeling
knowledge.

The core idea of our programming language and inte-

grated environment OBE is to let model and source code

One of the greatest problems in software engineeringi% in the same space. To express modeling concepts, we
that a software system quickly becomes so complex thaf, o 5 data structure that comes from the field of knowl-
it is hard to understgnd_ and thu§ to evolve and MaiByge representatiortopic maps[4]. If we start with a
tain. The usual _solut|0n is to pr(_)wde the develop_er Wlmpic map to express our concepts and then add code to
a formal or semi-formal description of threode] a view make them executable, we get a light-weight version of
of the system at a high level of abstraction. The modgipa without inheriting its complexity. In spirit, TBE

and code artifacts existing independently leads to sevgta s closely related titerate programminds].
problems, however: You cannot look up the details in the

code when reading the model and you cannot find outThe code stru_cture is laid (_)Ut using the t\_NO_ basic con-
structs from topic maps, topics and associations. Topic

*Supported by Deutsche Forschungsgemeinschaft (DFG) project WRPS peing graph-pased, these qureSpond to nodes and
841/6-1 “InOpSys” edges in graphs. Different semantic aspects of the code

1 Introduction




can be modeled by annotating topics and associations vateubject(any real-world “thing” or conceptual entity).

semantic information. This leads to our semantics beifigpics are related to each other throwgsociationsAs-

very flexible and declarative. With this preparation, adlociations are labeled by a setrofe namesone for each

kinds of data can be integrated with the code and we gepic that they relate. To provide topics with attributes

the following benefits: Tracing and linking between code. g., to link to documents or other additional informa-

and non-code artifacts is easy; further annotations (retidn), one can attachccurrenceso them. An occurrence

meta-data) of the code do not interfere with its executitma (key,value) pair where the value is either a reference

(seemulti-dimensionalityin [11]); and we can use an arto a (conceptual or real-world) resource or a literal. As-

senal of existing topic map tools to present, manage aswtiations and occurrences can themselves be represented

guery our inter-linked software system. as topics for further annotation through associations. This
The fine-grained and explicit way of representing cod®-calledreification enables meta-descriptions to be part

gives us an “assembly language” for code structure whefethe topic map object level. For further information on

many aspects can be modeled and queried using just afepic maps, consult [10].

atomic constructs. On the other hand, it is now the respon-

sibility of an editor tool to shield the programmer as much .

as possible from unnecessary details and to give meanife? Topics and the Embedded Program-

ful visualizations (at varying levels of abstraction) of the ming Language

structure (see Se¢ 5).

When programming in our integrated development en)- TUB'.E’ all programming elgments such as methods,
vironment (IDE), we wanted to have a feeling of intera lata objects and prototype objects are represented by top-

tivity that resembles how modeling and ontology building>" Ther_e are tW(_) main kinds of topics: Firsantent top- .
tore information and can be evaluated; we do not dis-

happens. Static programming languages such as [Java o] - . .
bp prog g fanguag uish between code, literals and expressions. Second,

have great IDEs, but these are mainly supporting a st itive topicsst imitive | tructs that
view of a system. We therefore turned to the dynam? imi |\t/e O.FI)'CbSIS O'retErlmlI)Ing ag?uage cons [)uﬁ s ha
programming languagé&elf [12] for inspiration: TUBE are not available via thembedded languageee below).

copies many of its semantic concepts and its way of int __kejxgmple is the settr'][er pr|m|t_|vte_ thattrepl?ﬁ es an existing
active program construction. child by a new one (the association stays the same).

The rest of the paper is organized as follows: We first | "¢ émbedded programming Iangt@gmsovideg the
: Lp@sm data objects as well as the syntax for defining the
to space constraints, the formal definition of the semantfegtent of a method. With this approach, we are able to

can only be sketched (Sef. 3). S&t. 4 shows advansggarate the structure of a program (which is handled by

ways of modeling structure inUBE. Sect[% presents Ourthe topic map) and the algorithms and expressions (which

implementation of TBE. The paper concludes (Seg}. 85}1re provided by the embedded language). As we will point

after outlining related (Sedf] 6) work and our compreheﬂ,gt in the following chapter;, this leads to a very expres-
sive future research (Seft. 7). sive programming style which enables the developer to

much better integrate model aspects of the software with
code than would be possible without the use of graphs.

2 Programs as Hyper-Graphs

In this section we informally introduce the elements of th%'?’ Associations and Message Dispatch

TusE programming language and describe the structyfeihe Tuse prorgamming language, program execution
of a program, the message dispatch algorithm and the rRlgraph traversal initiated by messages. Message dispatch

of the embedded program language. comprises two major steps: Finding the right topic and
evaluating it. Therefore, two primitive semantic opera-
2.1 Topic Maps tions are used, thiecate() and theeval() operation (see

) S _ Sec[3B). To control message dispatch, four different kinds
Topic mapsave their origin in knowledge representatiopf associations determine semantic behavebild, dele-
and the semantic web and are therefore strongly fOCU@%ie parentandassociatessociations (Fif] 1). All of the
on describing domain knowledge. They are standardizggkociations can have a name and additionally be tagged

as ISO-Standard ISO/IEC 13250 [4]. Topic maps consigishared Note that whenever we talk about a delegate
of three main concepts (so-callexpic map item)s topics,

associations and occurrenc@epicsare used to represent 1in our implementation, we use Python as the embedded language




or a child etc., we mean the topic that the corresponding "Suwerclass’
association points to.

"Class" .

D: shared "
obn 3 b <hared "Instance’
obﬂ 2

2.3.1 Finding a Topic

’7

i
I
D: delegate

C: child
P: parent

A message consists of a name and a set of parameter.
If we send a message to a topic, we want to find a child
whose association name matches the message name. Tt
is the topic that we need to evaluate.

"Class"

Figure 2: Recursive searching for a matching child fol-
Associate’ lowing the delegates hierarchy implementing inheritance

and class membership.

D: delegate C:x

C: child
P: parent
A: associate

“Member" found child is copied to the entry point of the message (the

topic that it was originally sent to) and uses therefore the
Figure 1: Structuring objects in aJBE graph: Constructs entry point’s context (parents etc.). Note that by copying
like the class-instance relationship or relations to memedes this way, we are building the static context of code.
bers and associated objects are modeled explicitly in fRieere are two points where dispatching can begin: At the
graph me-topic (the entry point) and thel ob topic that manages
the global namespace.

nesting

delegation

lparentz]._ delegate21 F
To evaluate a topiceval() is invoked on that topic. As

a first step, the parameters that come with the message lpa,enn|_ o delegaer F
(e. g., adictionanfx = 10,y = 7}) are destructively set P
as the topic’s children. During the execution of the em- Ff
bedded language code, the program has access to all of its e ]”D “% oo F
direct children and associates and thus to the parameters !

as well.

2.3.3 Sending a Message and Delegation

2.3.2 Evaluating a Topic

ﬁ

ure 3: Hierarchy of nesting and delegation: Delegates
searched for a matching child first, then the parents
MU their delegates.

In the simplest case, the topic that has received the m r%
sage has a child whose name matches that of the
sage. Then the child is copied by theate() operation
andeval() is executed in place. The copying is done to
create fresh instances of the parameter variables for each
invocation. If the topic has no child with the name give ; :
in the messagéocate() searches recursively for a maltch-9'3'4 Copying and Sharing
ing child among the delegates (see Fig. 2). When the cWe use copyingdloning [13]) of prototypes for object
rently searched topic has no more delegates, the parenestion rather than class instantiation. Copying is imple-
and their delegates are searched. mented by a generic operation that is directed by associ-
The distinction between parents and delegates (s#®n annotations: When copies are made of a topic, the
Fig. [3) can be seen as the distinction between nestsiwaredtag of an association determines if associated top-
and inheritance: If topics are nested (associated withica are copied as well: Non-shared topics are copiee|§
parent-association) the found topic stays in its contexdpy, e. g., to model “instance variables” from the Java
(lexical scopgby being copied to where it was found durworld) and shared topics are associated to the same topic
ing locate(). If a topic is a delegate of another topic, thas the prototypeshallow copye. g. for “static class vari-



ables”). This allows us to declaratively specify the copy
semantics of our objects.

3 Formal Semantics

To define the semantics ofUBE, we have split the lan-
guage into two parts: On one hand, tembedded lan-
guageis responsible for defining basic language con-
structs such as expressions, loops etc. On the other haigure 4: Inobj2, we would like to override just the
the structural languagedefines message passing, strugub-methodsub2 of meth. The two versions ofieth are
tural elements etc. This section gives a brief overview ebnnected by an implicit (and invisible) association called
the operations that make up the semantics of the straadynamic delegate A box with bars indicates that this
tural language. When used in the programming languagspic is marked as having a dynamic delegate.

these are also callgatimitives the setter primitive being

the most prominent example. The embedded language is .

Python (see Sedt. .1); for its semantics, con5ult [14]. 3.3 Strategies

Each composite semantic operation is defined birai-
3.1 Atomic Semantic Operations egy, a named parameterized set of rewrite rules that have
functional guards and functional “where” definitions. A
The following operations are the basic building blocks strategy returns a value by adding the teeturn() to the
the semantics: term store. If there are no rules that can fire, it is consid-
ered a failure of the operation. Due to space constraints,
d- we do not show the definitions of the semantic operations,
but instead demonstrate a smaller helper strategy below.
findMatch AtCurrentLevel() looks for a topic that has a
child whose name matches a message identifier. Terms are
written with angle brackets, functions with parentheses.

exec : Topic x Topic x Topic — Void
Evaluate the topic content either (1) in the embe
ded language, pagtob andmeas parameters or
(2) as a UBE primitive

clone : Topic — Topic
Copy the topic/association including the annota-

tlon§ findMatchAtCurrentLevel(x, msg)
new Topic :— Topic local: cur
Create a new topic. Associations are topics, rules:

too. A separate relationssoc() stores triples

. — cur(z)
(topic,source,target).

assoc(e, n,m),cur(n) | name(e) = msg
— return{m), - - -
3.2 Composite Semantic Operations assoc(e, n,m), cur(n) | isDelg(e)
— cur(m), assoc(e, n, m)
We define the following composite operations using rule-

basedstrategiegsee next section): 4 More Structural Modeling
locate : Topic x Msg — Topic
Find a topic, set up its context In this section we slightly extend the feature introduced in
eval : Topic x Params — Void Sect[ 2 and give examples of more sophisticated structural
Assign the values given by the parameter dictio- modeling.
nary to the corresponding children, evaluate the

topic content Sub-Methods and Nested Overriding. The idea is as
jmpToDynDelg : Topic x Msg — Void follows: Instead of having large monolithic methods with

Jump to the dynamic delegate, execute it in place sections that are named by comments, we turn each sec-
graphCopy : Topic — Topic tion into a helper method that has just that (potentially

Copy a contiguous graph component very long, but descriptive) name. If we iterate that pro-
set : Topic x Msg x Value — Void cess, we get a tree of methods that call sub-methods. Ide-

Assign a new value to the child of a topic ally, none of these methods has more than a few lines of



code ( + 2 pieces fit into short-term memory and can
thus be grasped at one glance). This practice is common

in XP and gives us a semantic skeleton of the program if Ch"djoo

we ignore the source code and look only at the method def fun(glob,me):

names. In contrast to Java and Sel§8E can represent print "Hello:'/me-x()."!"
the tree explicitly, as lexical scope can be nested arbitrar- child:x  child: x

ily. To really make this construct useful, though, we have h
to provide for selective overriding of nested topics. To see
how this works, take a look at Fif] 4. We do not want
to override all ofmeth, justsub2. We need to solve two Figure 5: The root topic is the object, it has no content. Its
problems if this is to work: First, children eethin obj2 child foo is a methodfoo’s child x contains the default
have to be able to find the children of the overriddenh. value for a parameter, whereas chiidallows one to as-
Second, if the overriding topic calls the overridden orgign a value tex via the primitive operatioRrimSetter.
(like send super calls in Java), overriding children have We are not showing the parent associations.
get called first.
To solve the first problem, one can mark a topic as “hav- >>> from tube import TubeEnvironment
ing a dynamic delegate”. From now on, this topic is con- ~>>> €nv = TubeEnvironment()
nected to its dynamic delegate via a virtual delegate as- >>> €nv.read(’paper-demo.tube)
sociation. We compute its target by searching among the ;Zio-eral/ﬁllgbifoo(x— world")
delegates of the parent for a child that has the same name ___ ™ '
as the source topic. Note that the delegates of the parent
could be recursively dynamic, leading to general applica-
bility of this principle. Having this kind of dynamic del-Figure 6: Executing the program from F[g. 5 from the
egation helps to avoid too many explicit associations aRgthon command line.
keeps our program structure flexible. The second problem
is solved by providing an operatigmpToDynDelg that
executes the delegaiteplacé} It then sees the overridingd.1  Back End: Python

children before its own. The back end is seamlessly integrated into the dynamic

language Python which becomes the runtime environment
Packages and Method Groups. Modeling nested of TuBE: After having started the Python command line
namespaces—as needed for packages (modules)—is aagyimported the TBE Python module, one can load a
in TUBE. One just adds intermediate associations: For &erialized version of a UBE program. Afterwards, every
ample, if there is a global objeglob.obj that we wantto TuBE topic is represented by a Python object and serves
put into a namespace calletg, we add an empty topic. as an interface between the world of Python and the world
It becomes a child callegkg of glob and has the ob- of TUBE. Accessing an attribute of a topic starts Iheate
ject as a child calledbj. We can even make the namesalgorithm and, if successful, returns another topial is
pacepkg show up only when browsing the program: istarted by putting arguments in parenthesis behind a node.
becomes invisible to message dispatch if we use a deleggample: glob.foo() first locates the childoo of node
tion association (instead of a child one) frgiob topkg. glob and then evaluates it. Evaluation jumps back into
In the same manner, we can structure objects by naming Python world; executable code is always defined as a
groups of related methods. Pythonfunction that has the twBythonargumentglob
andme. These are UBE topics and are the ticket back
. into the Tuse world. Accordingly, eaciTubeparameter
5 Implementation x is accessed vige.x. Fig.[§ shows a small example with
Python source code, Fig. 6 the interaction with the Python
Currently, the prototype of the UBE implementation is interpreter to run it.
split into two parts: A front end, the Tube Editor, that
browses and modifies aJBE topic map. And a back end .
that loads and interactively executes a program. 5.2 Front End: TubeEditor

2|nternally, we copy the dynamic delegate “before” the delegatirighe front ?nd i.S a separate application for editing, b_VOWS'
topic and point to it with a delegation association. ing and visualizing TBE programs (Fig[[7). Browsing




8086 # paper-demo.tube are new compared to Self are: nested lexical scope, dy-

 Sraphviz ) namic delegates for nested overriding and complete uni-
Child and Delegate Browser . . .

Root Node obi foo [1779136] formity of methods and objects as universal closures.

> o | e | R AHEAD Algebraic Hierarchical Equations for Appli-

cation Design[2], a framework for large-scale gener-
ative programming has influenced the waygE will

aces s support multiple artifact kinds and flexible composition.
e 0 oo AHEAD’s focus on large-scale static generative program-
i 00000 ]| | e RAREEer ming is dlfferent_ from UBE'S preference for dynamic

obj 01000 s features and flexible modeling.

Hre Lz a0 o 2 Starting with Java “Tiger” 1.5, Java also gets meta-data

Name Target Type | Shar  Comment
X 1411200  chil ¥ _

facilities [5] that point in the direction of model integra-
tion and are used for generative programming.

X 1351344 chil &
obj par

+ ] = =

)

| LA )

s - === 7 Future Research
We anticipate the following milestones in developing
TUBE:
Pure Java implementatioiWVe are going to implement
the current prototype in Java, using “Jython”, the Java im-
plementation of Python. Browsing, searching and visual-
Z ization abilities will be greatly extended and persistence
is going to be completely topic-map-based.
Figure 7: The window on top shows the example from Aspect-oriented programming (AORyested overrid-
Sect.[5.1 in the TBE editor: the widget on top is aing already gave a glimpse at full-featured support. We
Smalltalk-style structural browser. The bottom left showseed to investigate how an existing program can and
a list of all topics and the bottom right is for editing topshould be modified when adding an aspect. As an added
ics and associations. On bottom, a window from thgenefit, using graph composition for applying aspects will
GraphViz application contains a visualization that haglow us to compose both code and data.
been exported by the editor. Component-based programminie are going to use
the constructs introduced by the last stage and some of the

means traversing the child and delegate structures. Ine gdehng abilities that. are glready the.r<.a to permit gre){-
)X components and invasive compositioh [1]. We don’t

ing, one configures topics and associations. For visuali 2 . ) .
tion, TubeEditor relies on the external GraphViz applicaa "< the dichotomy between instances and class that is
ound, for instance, in Java. And our way of using asso-

tion from AT&T. The editor is implemented in Objective . . ; . :
C using the Cocoa framework of Mac OS X. ciations is quite compatible with the connecfnors—and—ports
approach used by the component community.
Meta-Programming.TUBE only having topics and as-
6 Related Work sociations as basic constructs is going to help us towards
designing a very simple and elegant meta-protocol. Re-
The notion of having a runtime environment in which onéection will benefit in the same manner. Finally, the flexi-
can interactively construct programs and mix code withlity and non-obtrusiveness of annotations in topic maps
data is obviously not new. Examples of programming lal¢ad to perfect hooks and parameters for meta programs.
guages that have found very elegant ways of providingType system.lt is clear that much functionality that
these facilities are: Lisp[7] and Self [12]. Especially thehould be part of a standard library, such as graph traver-
latter inspired our semantics for graphs. Self is a very meal, would profit greatly from a type system and related
ture development environment and many consideratianechanisms such as multiple dispatch (used in languages
have gone into performance optimizations. Conversedyjch as Common Lisp [7]). Ideas in this area include
TUBE is a prototype with emphasis on model integratidight-weight types, inferred interfaces and stateful multi-
and dynamic execution. Language features o8& that methods.




Further IDE enhancementd.everage TBE's expres- [8]
siveness to manage a complete software development
process (requirements engineering, issue tracking, cross-
model annotations etc.); persistent snapshots of the 531?]
tem for version control and for import and export of “mod-
ules”; UML integration.

[10]

8 Conclusion

[11]
In this paper, we have presentedUdE, a program-
ming environment that integrates code and knowledge-
representation-based data. This leads to many synergies:
it allows us to express more modeling knowledge di-
rectly in the software system; we can integrate all artifadée?l
that are relevant to its understanding; and code structure
can be explored using professional knowledge represen-
tation tools. Picking the dynamic programming language
Python as meta and object language of our prototype I:-,)]
lowed us to write meaningful programs right from th
start.
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