
User Involvement in Software Evolution Practice:
A Case Study

Dennis Pagano
Technische Universität München

Munich, Germany
pagano@cs.tum.edu

Bernd Bruegge
Technische Universität München

Munich, Germany
bruegge@cs.tum.edu

Abstract—User involvement in software engineering has been
researched over the last three decades. However, existing studies
concentrate mainly on early phases of user-centered design
projects, while little is known about how professionals work with
post-deployment end-user feedback. In this paper we report on
an empirical case study that explores the current practice of user
involvement during software evolution.

We found that user feedback contains important information
for developers, helps to improve software quality and to identify
missing features. In order to assess its relevance and potential
impact, developers need to analyze the gathered feedback, which
is mostly accomplished manually and consequently requires high
effort. Overall, our results show the need for tool support
to consolidate, structure, analyze, and track user feedback,
particularly when feedback volume is high. Our findings call
for a hypothesis-driven analysis of user feedback to establish the
foundations for future user feedback tools.

Index Terms—user involvement, software evolution, user feed-
back

I. INTRODUCTION

User involvement in software engineering is an established
research field [10], which has been studied particularly at its
intersection with human-computer-interaction [1]. It aims at
maximizing system usefulness and usability by understanding
users’ needs and expectations. Its foundations go back to the
early 1980s, in particular to Gould’s and Lewis’ key principles
of usability [4] which together with Norman’s and Draper’s
work [12] form the pillars of user-centered design.

Over the last three decades user involvement has changed
significantly. For example, software users changed from pro-
grammers or trained technical staff to practically any person
[5], causing a fundamental shift in developers’ attitude towards
them [8]. With application distribution platforms and mobile
devices, neither the users of software nor its context of use are
known before its delivery. The consequence of these changes
is an increasing distance between developers and users [6],
while more focus on users would actually be necessary to
satisfy their increasing demands [11]. As a consequence, post-
deployment user feedback such as feature requests and bug
reports become increasingly important to developers [9].

In open source communities social media facilitate the
interaction between users and developers and help to dissolve
boundaries between them [14]. Likewise, current web-based or
integrated rating and feedback platforms allow users to easily
express their pains and needs for commercial software. But

while there are studies about user involvement in user-centered
design projects, little is known about how professionals work
with end-user feedback, and which are the benefits and chal-
lenges – especially when a large number of users is involved.

We report on an empirical case study which we conducted
between June and September 2012 to explore the current
practice of user involvement during software evolution. Our
goal was to understand what happens with user feedback in
development environments and what is the rationale behind.
First and foremost, we aimed at describing current practice
and identifying underlying challenges, but we also wanted
to glimpse at the practitioners’ requirements on tools which
would solve the identified issues. The contribution of this
paper is twofold. First, we describe settings put in place by
professionals to involve users and how and why they deal with
the collected user feedback. Second, we derive a catalogue of
hypotheses about user involvement in software evolution to
guide further research and tool development efforts.

The paper is organized as follows. Section II explains the
study setting in terms of research questions and methodol-
ogy, and introduces the research data. The following three
sections summarize our findings on the user involvement
setting (Section III), developers’ workflows to analyze user
feedback (Section IV), and developers’ expectations towards
tool support (Section V). Section VI discusses implications of
our findings for researchers, practitioners, and tool designers
and describes the limitations of our study, while Section VII
presents related work. Section VIII concludes our study.

II. STUDY SETTING

A. Research Questions

We are particularly interested in three aspects of how pro-
fessional developers involve users during software evolution:
their user involvement setting, their workflows to analyze and
work with user feedback, and their requirements for a tool-
supported consolidation and assessment of user feedback.

RQ 1: User involvement setting describes how, where, and
when users may provide feedback. In particular, we aim at
answering the following questions:

• Infrastructure: Which channels do developers use to
gather user feedback?

• Frequency: How often can users provide feedback?

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Software Engineering in Practice

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

953

• Communication: Are users systematically involved?
RQ 2: User involvement workflow details how and why
developers work with user feedback. We aim at identifying and
understanding developers’ problems, answering the following
questions:

• Motivation: Why is user feedback important?
• Analysis: How do developers analyze user feedback?
• Problems: Which problems do developers encounter, and

which role do quantity, quality, structure, and content of
user feedback play?

RQ 3: User involvement requirements summarize devel-
opers’ needs and expectations towards tool support for user
involvement. We focus particularly on user feedback consoli-
dation and assessment, answering the following questions:

• Tool support: Do developers expect that tool support
for feedback consolidation improves user involvement
practice?

• Consolidation: How should feedback be consolidated?
• Assessment: Would developers embrace measures about

users and usage which are driven by user feedback?
We formulated a set of 20 specific interview questions for these
aspects together with a set of answers to facilitate the interview
process. Additionally, we collected 7 meta-questions about the
subjects’ background and the projects they report on, in order
to enable a descriptive classification. The complete catalogue
of questions is available online1.

B. Research Method

Case studies can provide a detailed view on real-life situa-
tions and thus may reveal the reasons why and the mechanisms
how specific phenomena occur [2], [3]. Our goal is to explore
user involvement in software evolution practice to understand
developers’ current workflows, their problems, and their mo-
tivation to involve users. Additionally, we seek to describe
and explain the situation whenever possible. Consequently,
our case study mainly serves an exploratory purpose, but also
exposes descriptive or explanatory character [16].

Our study proposition is threefold. First, we assume that
developers appreciate user feedback as important source of
information about the acceptance of their software. Second,
we hypothesize that current user involvement practice is un-
systematic and bears several technical challenges and practical
limitations in particular due to the quantity, quality, structure,
and content of user feedback [13]. Third, we expect that de-
velopers embrace tool support which allows them to deal with
large amounts of user feedback and to assess the acceptance
and status of their software according to its users.

To collect qualitative data which helps to explore the
practical situation and to test our proposition, we conducted
semi-structured and open-ended interviews [15] via phone
or face-to-face, with professional developers working at dif-
ferent software companies. Semi-structured interviews allow
for improvisation and thus facilitate an exploration of the

1http://www1.cs.tum.edu/dennispagano#downloads

Preparation Phase Data Collection Phase Data Analysis Phase

Choose data collection
method

Explain study purpose Read transcriptions

Choose case selection
strategy

Ask study questions Highlight unique
statements

Create case study protocol Record audio Code statements
Formulate invitation

template letter
Transcribe audio Relate statements to

questions
Formulate consent

agreement
Send transcription to

participants
Select meaningful

examples
Preselect subjects Wait for corrections Compare statements
Send invitation letter
Send question catalogue
Send consent agreement

Figure 1. Case study methodology.

studied cases [16]. Rather than randomly choosing cases
for the study, we selected few software companies which
develop and maintain interactive software for a large number
of users, and one company with a smaller user audience in
order to study potential effects of the amount of users. The
selected companies allow their users to provide feedback and
are interested in understanding it. We employ this purposive
sampling strategy since we expect the resulting cases to be
most relevant to our proposition [2].

For our case study, we followed the design principles and
procedures described by Runeson and Höst [16]. As shown
in Figure 1, our methodology consists of three phases: a
preparation phase, a data collection phase, and a data analysis
phase.

1) Preparation Phase: After choosing the data collection
method and case selection strategy, we created a case study
protocol in order to capture design decisions and document
the data collection process. Next, we formulated a template
letter to invite participants as well as a consent agreement to
inform subjects about the study purpose and their anonymity.
The consent agreement also documents the explicit agreement
of the subjects to participate in the study. We sent the invitation
letter via email to six selected companies which were the first
candidates. Five companies agreed to the interviews. Around
one week before an interview, we provided the specific subject
with the question catalogue. We explicitly called their attention
to the semi-structured nature of the interview, and underlined
that the questions should be regarded as support.

2) Data Collection Phase: Before starting each interview,
we briefly explained the study purpose to the participant and
recalled the exploratory nature of the study. As suggested by
Runeson and Höst [16], we recorded each interview in an
audio format after having asked for the interviewee’s consent.
The interviews took between 29 and 55 minutes, during which
we asked the pre-defined questions as well as questions as
a reaction to each subject’s particular answers. After the
interviews, we transcribed the recorded audio with the help
of the notes we had taken during the interviews. We then sent

954

Table I
OVERVIEW OF INTERVIEW PARTNERS AND STUDIED PROJECTS.

company code # active users user audience platform release cycle subject code work experience project role

C1 > 10,000 special consumers both 3 weeks S1 6–10 years developer
C2 150,000–200,000 consumers & professionals desktop 4 weeks S2 3–5 years developer
C3 > 10,000 consumers mobile 2–6 months S3 3–5 years developer
C4 100,000–200,000 consumers mobile 2–6 months S4 3–5 years architect
C5 100–500 special professionals desktop 4–8 weeks S5 6–10 years product manager

each transcription to the corresponding interviewee and asked
for corrections, which we did not receive.

3) Data Analysis Phase: We started analyzing the inter-
views by reading the transcriptions and highlighting remark-
able and particularly unique statements. Due to the semi-
structured nature of the interviews, the transcriptions did
not always follow the order of the pre-defined questions.
Moreover, subjects often extended earlier statements as the
interview proceeded, so that helpful details were frequently
given during later questions. We therefore decided to code the
transcriptions according to two schemata. First, the pre-defined
interview question each statement answers, and second, the
research question for which we regarded it as relevant. The
second schema was especially helpful to identify meaningful
examples for each research question. We then answered the
research questions by comparing the different statements.

C. Research Data

Five small and medium-sized software companies agreed to
take part in our case study. We interviewed one subject per
company. Each subject reported on one specific, proprietary,
commercially successful product developed in her company.
Table I gives an overview of the studied projects and subjects.
In particular, it provides details about the user audience, and
shows the work experience and main project role for each
subject. Four of the five studied software products (C1–C4)
have a large number of users (more than 10,000), whereas
the software developed by C5 accounts for a smaller user
audience (between 100 and 500). In three cases (C1, C3, and
C4) the users of the studied software are consumers, a special
consumer group in the case of C1, and all consumers in the
case of C3 and C4. From the remaining two companies, C2
develops an application with a general user audience, while
C5 develops software for a special group of professionals. Two
companies (C2 and C5) work on desktop applications and two
(C3 and C4) on mobile applications, while in the case of C1
the application is developed for both platforms.

III. USER INVOLVEMENT SETTING

Our interviews show that gathering user feedback plays an
important role in the studied companies. All subjects report
that their users may contribute using error reports, feature
requests, and feedback on existing features which includes
improvement and enhancement requests. All subjects, except
S5, also regard users’ ratings (e.g. in application distribution
platforms such as the Apple AppStore) as important user

Table II
USER INVOLVEMENT INFRASTRUCTURE: USER FEEDBACK CHANNEL

UTILIZATION FREQUENCY – 4: MOST OFTEN, 3: OFTEN, 2: SOMETIMES,
1: RARELY, –: NEVER.

channel C1 C2 C3 C4 C5 mean

E
rr

or
R

ep
or

ts Integrated 3 4 4 3 4 3.6
Email 4 1 4 1 4 2.8
AppStore – – 4 4 – 1.6
Phone – 1 3 1 1 1.2
Blog – 3 – – – 0.6

Fe
at

ur
e

R
eq

ue
st

s

Email 3 2 4 1 4 2.8
AppStore – 3 4 4 – 2.2
Integrated – 4 3 3 – 2.0
Phone – 2 – 1 1 0.8
Blog – 3 – – – 0.6
Forum 3 – – – – 0.6
Twitter – 3 – – – 0.6
Facebook 1 – – – – 0.2

Fe
ed

ba
ck

Email 3 2 4 1 4 2.8
AppStore 3 2 4 4 – 2.6
Integrated – 4 – 3 – 1.4
Phone – – 3 1 1 1.0
Blog – 3 – – – 0.6
Forum 3 – – – – 0.6

R
at

in
gs AppStore 4 – 4 4 – 2.4

Rating site – 4 – – – 0.8
Email – – 3 – – 0.6

feedback. While being aware of their importance in other
scenarios, S5 stated that ratings are irrelevant for the product
she reported on. Interestingly, S5 reported on the only software
being developed for a smaller group of professionals, which
suggests that public ratings are less important in such contexts.
In contrast, S1, who develops for a large consumer audience,
regards ratings as the “most critical” user feedback which even
can “create tension” and “harm your product”. In particular if
errors occur, users tend to quickly give bad ratings, which
in turn immediately affect sales numbers. S1 illustrates the
possible effects: “If you mess things up, they [users] will kill
your product”.

A. Infrastructure

Table II shows the user involvement infrastructure as re-
ported by the subjects in our case study. For four types of
retrospective user information we asked subjects to name
the channels over which this user information reaches them,
together with its relative frequency. In total we collected 9
different channels, which shows that user feedback is currently
widely scattered rather than being a single source of informa-
tion for developers. The top three channels for error reports,
feature requests, and feedback on existing features are common

955

except for their order. Emails, the AppStore, and mechanisms
integrated in the software (for instance a feedback library)
account for the most user feedback at subjects’ companies.
Ratings are mostly done in the AppStore, on particular rating
sites, and via email, while integrated mechanisms are not
used. Subject S4 explained that their software prompts the
user to rate the product after a specific time period, which
seems to be common practice for mobile applications. None
of the companies provides all users with access to a public
issue tracker. S3 specifically explained that at her company a
public issue tracker is utilized only in the case of one single
software, whose users are professional salesmen. Apart from
this exception, all subjects agreed that issue trackers are best
for internal use only.

Hypothesis 1. User feedback is scattered across multiple
channels, with email, application distribution platforms, and
integrated feedback mechanisms being frequently utilized.

Interestingly, users seem to select the appropriate channel
intentionally. S1 describes: “The more critical their feedback
is, the more public is the channel they choose.” She reported
on a case where the company had to concentrate on the
mobile version of the software, and decided to delay the
development of some of the desktop version’s features. “At
the beginning we received single mails, but as more and more
desktop users felt left over, they started a public campaign on
Facebook.” S2 confirmed this user behavior: “We had a user
forum but discontinued it, because the users allied to request
features we did not want to implement.” In particular errors
are immediately published. According to S1, users tend to give
low ratings to apply pressure: “It creates a lot of tension if your
users write ’you’ll keep getting one star until you fixed X’.”

Hypothesis 2. Users intentionally select the feedback channel
to apply pressure by allying against the software company. The
more critical their feedback is, the more public is the channel
they choose.

B. Frequency
In all companies we studied, users can provide feedback

continuously. In practice this means that the feedback channels
remain continuously open. Companies C1, C2, and C4 receive
a continuous stream of user feedback, with dozens of messages
per day, even if no new version was recently released. C3
and C5 receive less feedback, each for a different reason. C3
develops software on behalf of other companies. Therefore,
they typically get feedback digests, pre-selected user feedback,
or feedback reported by their customers. The users of C5, who
all use the software professionally, first collect several ideas
and feedback and then send a single message which contains
them all. Consequently, C5 receives feedback less frequently
but in high concentrations.

In general, users seem to give feedback just as their concern
happens. Subject S1 explained that therefore user feedback and
product backlogs might contradict each other: “The question is
always when and to what extent do you consider the feedback.
But if they really shout, you need to react quickly.”

Table III
USER-DEVELOPER COMMUNICATION MODES.

feedback type C1 C2 C3 C4 C5
Error reports pull pull push push pull
Feature requests pull push push push push
Feedback push push push push pull
Ratings push push push pull push

Hypothesis 3. Users frequently provide feedback, but user
feedback does not always reach developers.

C. User-Developer Communication

None of the studied companies employed focus groups or
a similar user involvement method to gather user feedback
after the product launch, for instance to assess a planned new
feature. Only C3 had conducted focus groups in the begin-
ning of single business-to-business projects, but with their
customers instead of end-users. S3 explained that focus groups
were regarded as helpful to get to know a new application
domain. Moreover, S3 claimed it was common practice that
end-users are not involved until the launch of a product, while
customers typically take the role of the end-user during the
initial development phase. However, customer involvement
seems to serve a purpose other than eliciting user requirements,
as S3 justified this practice stating that “customers know what
they want, but not how it should look like”.

User-developer communication is established differently
across all studied organizations, as illustrated in Table III.
Error reports are automatically triggered (pull) in the case of
C1, C2, and C5, who ask users to provide error reports after
a crash has occurred. C1 explicitly trigger feature requests,
as S1 describes: “Sometimes we ask our users on Facebook
what they desire, and usually get constructive suggestions.”
Feedback on current features is explicitly requested only in
the case of C5, who roll out beta versions to selected users.
Finally, C4 explicitly trigger product ratings after fixed time
periods by redirecting the user to a specific AppStore page.

An interesting observation was made by S5, who distin-
guished four different communication types. First, conver-
sations with users at trade fairs are triggered by the users
and may eventually lead to new product ideas. Second, beta
versions made available to selected users trigger frequent,
personal, bi-directional discussions. Third, users proactively
ask questions on features in pre-sales software versions they
have used for a short time. Finally, the typical “support
communication” regards users’ experience with a product
which they have bought and used for a longer time.

The most systematically supported feedback type seem to be
error reports, as all studied products are capable of including
automatically generated stack traces and usage data as an error
occurs. The reason may lie in the very concrete nature of er-
rors. It is evident when they happen, and quite straightforward
to automatically collect related information with established
development frameworks or libraries. All other user feedback
is not “machine-readable” and in particular lacks a tangible
trigger. As a consequence, there is no common practice neither

956

on providing nor on gathering such feedback. For instance, S5
explained that their users include multiple suggestions in one
message and often even mix different feedback types. On the
other hand, companies do not systematically “educate” their
users to a common, helpful way of giving feedback.

Hypothesis 4. Users are not systematically involved during
software evolution. Apart from error reports there is no
commonly agreed practice on how to provide nor on how to
gather user feedback during software evolution.

IV. USER INVOLVEMENT WORKFLOW

A. Motivation

The main motivation to appreciate user feedback seems to
be its origin: the user. Our interviews revealed that companies
are interested in their feedback particularly because of two
reasons. First, the user is king. After all, users buy the
product and thus companies are interested to satisfy their
needs. Users’ goodwill can quickly turn into anger, and even
harm the company, if they get frustrated with the software.
Consequently, software companies continuously seek to assess
the acceptance of their products. Second, developers need
real-world data from users’ environments, be it statistics about
which feature is used or which errors occur most and in
which context. Such data is especially helpful to complement
software tests and to align development efforts with feature
importance.

Hypothesis 5. User feedback supports continuous assessment
of product acceptance and serves as real-world usage data.

All subjects agreed that user feedback is helpful to reach
three main goals: to improve software quality, to identify
missing features, and to advertise and market a product.

a) Improve Quality: Users typically help to improve
software quality by reporting latent errors. S4 explains that
error reports are the feedback they are most interested in:
“Often we get problems which we couldn’t think of before,
since users have very heterogeneous configurations on their
machines.” S5 further illustrates the value of error reports: “We
need crash reports and stack traces. Without them we would
not know which crashes happen out there.” In single cases,
products were even released with few presumably insignificant
known bugs. But they turned out to be significant instead,
which eventually affected ratings and sales numbers.

Hypothesis 6. User feedback can improve software quality.

b) Identify Missing Features: All subjects reported that
users frequently request additional features. On the one hand,
companies appreciate this feedback as it helps to perfect a
product. S1 illustrated that missing features affect product
acceptance: “From their comments we could see that they
will never accept our product without this feature.” On the
other hand, companies need to be ahead of their users and
cannot create products by simply reacting to their feedback.
Instead, products are developed following internal roadmaps,
while external feature requests are only regarded as additional

!"#$"%&'(#)"&%

*+,#-),%&./$0"%1""23-)4&%

5&&"&&%./2.6.2(-0%7#.'#.,8%

*&9:-,"%.:7-),%

;0-&&.18%1""23-)4%

!"#$%&'()*+,&'

!"#$%&',-*#.('

/(&+'0&&123,.'

!"#$%"%&'()!*%+#)

4+")+"56'

7893,5'

,"-%.#)!*%+#)

:++)+'+&9)+5''#'0&35*+&'+&;*&(5'

</&"#,%./%)'/6"/9'/-0%
,''0&%-/2%='#4>'=&%

Figure 2. User feedback analysis process.

support and signposts. S4 named one important reason for
this: “We filter very wisely, because we do not know how
many people this will really help.” This information need
was also confirmed by the other subjects. As a consequence,
small, incremental, perfective feature requests are rather heard
than revolutionary new ideas. S5 explained that professional
software users are aware of this fact: “Our users thoroughly
make up their mind how they could improve their workflows
and increase their profit. Then they argue that it would help
other users as well.”

Hypothesis 7. User feedback helps to identify missing fea-
tures, but developers need to assess how many users will
benefit from a specific new feature.

c) Advertise and Market Product: Our subjects agreed
that in particular two types of user feedback benefit their
marketing. First and foremost, having many positive ratings
in application distribution platforms and particular rating sites
pushes applications into top lists, which in turn leads to more
downloads and higher sales numbers. S4 illustrated that this
was the reason why they explicitly ask the user to rate the
application after a specific time. S1 explained the underlying
reason: “We have a five star product in the AppStore. Together
with the price this creates trust among the users.” Second,
several users write about specific applications on their blogs
or other social media. Both S2 and S5 reported on cases where
a user had requested a feature which was later implemented,
whereupon the user publicly praised the company. The subjects
perceived such user-generated experience reports as important
multipliers.

Hypothesis 8. User feedback helps to advertise and market a
product by conveying trust in the form of positive user ratings
and user experience.

B. Analysis

Our interviews show that studied companies examine user
feedback in order to create corresponding todos and prioritize
them. We found that all studied companies follow a common,
iterative process to analyze user feedback, which comprises
two phases and six steps, as shown in Figure 2.

957

d) Preparation Phase: The preparation phase comprises
steps to collect feedback from different sources and assign it
a coarse-grained category.

In the first step, developers merge the information they get
over different feedback channels. This is necessary, since user
feedback is obtained in various ways such as via email, phone
calls, or over the AppStore. However, not all channels are
equally suitable for a specific feedback type. S2 explained
that in particular error reports were not really helpful when
reported for instance by email, since typically important con-
text information is missing: “In such a case we answer them
to report the error via the integrated feedback mechanism.”

In the second step, developers read user messages and
extract the included suggestions, which might be multiple for
a single message. To what extent users provide digest-like
feedback seems to depend particularly on the specific user
audience, as claimed by S5: “In our market segment it is quite
typical that users are willing to provide feedback. Sometimes
our users see themselves more as testers or co-developers.”

In the third step, developers decide if the feedback reports a
problem or requests a feature. All studied companies make this
simple distinction, in particular to be able to direct the report
quickly in the right workflow. Error reports are typically more
critical than feature requests, and therefore require a faster
reaction. C1 and C2 explicitly maintain two feedback lists for
this purpose. The other subjects did not report about explicit
lists, but consistently made this distinction when talking about
their workflows.

e) Triage Phase: The triage phase comprises steps to
assign feedback a priority and convert it into common project
artifacts.

In the fourth step, developers assess the individual priority
of the feedback. In the case of an error report, they estimate
how critical the reported error is, while for a feature request
developers assess if it is qualified, suitable to improve the
product, and fits into the product roadmap.

In the fifth step, developers estimate the impact of the user
feedback by investigating how frequently it occurs. To this end,
they relate multiple pieces of feedback to each other to find
commonly reported issues and needs. Our interviews suggest
that this step is more difficult for feature requests than for
error reports because of three reasons. First, in case of an
error all studied companies could access stack traces, which
could be symbolized and compared by tools. Feature requests
on the other hand, are hand-written and need to be read and
understood in order to compare them. Second, error reports
typically refer to a singular, concrete event, while features
and the underlying user needs might be complex. Third, while
the similarity of error reports can typically be calculated by
comparing stack frames, the similarity of feature requests
might be rather subtle. S5 explained that two similar feature
requests might seem unrelated at first glance: “Users might
request different things, but their underlying goal might be
the same. Our task is to abstract from the actual request, to
think about the why, and to anticipate what is really missing
on a conceptual level.”

In the last step, developers establish a connection with
conventional development tools and workflows. Our inter-
viewees illustrated two particular ways. First, user feedback
is discussed in team meetings. In the case of C1, C4, and
C5, multiple developers collect user feedback and discuss the
results in recurring meetings. We found that such exchanges
were considered particularly useful as an additional tool to
identify frequently occurring errors and feature requests. Sec-
ond, developers create tickets from user feedback and insert
them into the internal issue tracker. Interestingly, our impres-
sion was that user feedback is considered rather “flexible” until
it manifests as a concrete task in such a tool.

Hypothesis 9. Developers analyze user feedback in order to
create prioritized tasks which fit into the product roadmap.
The priority of a specific feedback depends on the frequency
of its occurrence.

C. Problems

All studied subjects agreed that it takes the most time to read
and understand user feedback as well as to assess its impact by
identifying how many users it applies to. We identified three
main reasons: content and quality of user feedback, manual
analysis and quantity of feedback, and the communication gap
between developers and users.

f) Content and Quality of Feedback: Our interviews
show that especially user feedback written in natural language
is a problem for developers. These texts are typically written
from a subjective perspective which requires developers to
get into the user’s mind to be able to reproduce her issue
or request. But often information which would be essential
to understand the feedback is missing. As illustrated by S1,
users also typically regard their feedback as very critical while
it might not be for the development team: “Some users are
in the habit of shouting quite loud, but they don’t really
mean it.” Moreover, complex features and user workflows
often lead to complex feature requests or issues. All subjects
except S5 further explained that user feedback often has poor
quality, in particular in the case of comments in the AppStore.
According to them, a substantial part of these comments are
unqualified and do not provide any value to the developers.
However, developers can only estimate the value of feedback
after reading or at least browsing it. It seems that such
wasted time increases developers’ disenchantment with user
feedback. S2 confirmed this interpretation: “Often users write
a lot of text, but then it turns out that they just used or
configured the software wrongly. At first this causes a lot
of trouble, and then you find that it was the users’ fault.”
Last, our interviewees reported that user feedback is often
contradictory. For instance, S1 illustrated that part of their
users consistently requests advanced, professional features,
while the other part appreciates simplicity and the easy entry.
Among our subjects contradicting preferences are currently
ignored, and the internal product roadmap is followed instead,
as S1 explained: “We ignore contradicting feedback until there
is a clear opinion in the community.”

958

Table IV
PERCEIVED COMPLEXITY OF AND SATISFACTION WITH CURRENT USER

FEEDBACK ANALYSIS PRACTICE.

subject amount of

feedback

complexity of

comparing feedback

perceived satisfaction

S1 high somewhat difficult somewhat unsatisfied

S2 high very difficult very unsatisfied

S3 low somewhat difficult somewhat satisfied

S4 high somewhat easy undecided

S5 medium very difficult undecided

Hypothesis 10. Content and quality of user feedback affect its
analysis. Natural language content and low feedback quality,
as well as contradictory user feedback constitute particular
problems for developers.

g) Manual Analysis and Quantity of Feedback: We found
that subjects analyze user feedback almost exclusively in a
manual way. Consequently, in particular companies which
receive a large amount of feedback spend considerable effort
on its analysis. S2 pinpoints the limits of this practice: “Of-
tentimes we need to mark the mails as read, because we do
not have the resources to really read them all.” The analysis
process suggests that developers even read a specific feedback
multiple times while analyzing it. Our subjects reported that
in particular assessing criticality and impact is a difficult
and time-consuming task. To accomplish it, developers need
to compare new feedback to the already reported in order
to find duplicates or similar suggestions. Consequently, a
single request can require the developer to examine multiple
other feedback messages. We asked our subjects about their
satisfaction with the currently established analysis process,
on a 5-point Likert scale (1: very unsatisfied, 2: unsatisfied
3: undecided, 4: satisfied, 5: very satisfied). The average
response lies between somewhat unsatisfied and undecided
(mean=2.6), as shown in Table IV. Although the gathered
data does not allow for generalization, our interviews suggest
that the amount of received feedback as well as the perceived
complexity of the analysis task might influence developers’
satisfaction with current practice.

In contrast to other feedback types, automatically generated
crash reports which contain machine-readable information, can
be analyzed automatically. C1 and C5 employ analysis tools
which are capable to use this information to group multiple
reports by the similarity of the reported stack frames, and thus
to provide a measure for the impact of an error.

Hypothesis 11. Developers analyze user feedback mainly
manually and read single feedback multiple times.

Hypothesis 12. Developers spend most effort on assessing the
priority and impact of user feedback. The main reason for this
is that developers need to manually estimate how many users
are affected by a specific feedback.

h) Communication Gap between Developers and Users:
Our interviews depict a communication gap between develop-

ers and users. Because developers obtain user feedback over
different channels, it often gets copied from one medium to
another. This typically removes the possibility – if any – to
react on the feedback without major effort, for instance to ask
clarification questions. Furthermore, it increases developers’
distance to the reporting user. Many feedback channels allow
only for one-way communication from users to developers
in any case, which is typically not effective. A prominent
example often referred to by our subjects is the AppStore,
where users publish feedback under a self-assigned name.
While there are no built-in means to reach a specific user,
S3 exemplified how developers try to bypass this gap: “We do
’social reverse-engineering’, meaning that we try to find a user
on Facebook or Xing who left a bad comment in the AppStore,
by searching for the reported username. Then we ask if we
could set up a remote debugging session.” The absence of
mechanisms which allow developers to contact the feedback
author is perceived as a serious limitation by our subjects.
S1 illustrated one effect of this gap: “Often there is no real
error, but the user did not understand a specific feature. But we
cannot get back to them. Instead we are forced to change the
AppStore description to clarify the feature, or to add additional
help files.” Most feedback reporting mechanisms further do
not allow users to edit their feedback. Subject S2 mentioned
this as a severe limitation because of two reasons. First, users
seem to report problems often too hastily, but later cannot
cancel their feedback. Second, in some cases users provide
clarifying information later, but cannot associate it with their
prior feedback.

Hypothesis 13. Users and developers are disconnected due
to communication gaps in user feedback channels.

V. USER INVOLVEMENT REQUIREMENTS

A. Tool Support

Our interviews show that developers generally would em-
brace tool support to consolidate user feedback. In particular
they hope for a better structure among the gathered feedback
and expect to save time, if user feedback could be grouped
semi-automatically or automatically to support an impact
analysis. S4 pointed out that user feedback should be regarded
as an important development artifact, for which longitudinal
tracking facilities are necessary. We think that companies
receiving large amounts of user feedback will benefit from
tool supported feedback consolidation, while we expect less
impact on companies which only receive a small amount of
feedback. Further, S1 and S5 remarked that new tools really
need to provide significant benefits with respect to their current
practices to be acceptable.

Hypothesis 14. Developers need tool support to consolidate,
structure, analyze, and track user feedback, particularly when
feedback volume is high.

B. Consolidation

We asked our subjects about their preferences for two differ-
ent ways to consolidate user feedback: A re-active approach

959

collects user feedback as before and analyzes the collected
data afterwards. A pro-active approach tries to avoid duplicate
feedback by presenting the reporting users relevant existing
feedback that they should vote for.

All subjects, except S5, preferred the pro-active approach
and gave two main reasons. First, it takes most of the work off
developers’ shoulders, since priority and impact are basically
results of the number of votes. Second, it reduces or even
avoids duplicates and thus unnecessary traffic. Consequently
it allows developers to concentrate only on important feedback.

S5 preferred the re-active approach to avoid biasing their
users: “If you bias the users with other user feedback, you will
probably restrict the creativity of the users.” S5 acknowledged
that the pro-active approach might be more appropriate in
cases where developers receive a higher amount of feedback
or users are not professionals. Interestingly, S4 regarded both
approaches as reasonable for two different privacy scenarios:
The re-active approach is more appropriate for feedback which
is currently private to the company such as phone calls,
while the pro-active approach should be employed for publicly
visible feedback such as AppStore reviews.

When asked how tools should consolidate user feedback,
studied subjects particularly favored three features. First, all
subjects agreed that in particular duplicates should be grouped
together. Moreover, subjects explained that while two users
might have made the same experience with the software, their
reports might be quite different, what should be considered
by any such tool. Second, all subjects agreed that the type of
feedback (error reports, feature requests, etc.) should determine
a feedback group as before. Third, all subjects, except S4,
reported that it would be helpful to know the feature to which
a feedback applies. S1 mentioned that it would be helpful to
be able to structure the received feedback “like the software”.

Hypothesis 15. To consolidate feedback, tools should group
duplicate or similar feedback, capture the feedback type, and
the feature for which it applies.

Hypothesis 16. Pro-active tools are appropriate for high
volumes of non-confidential feedback, while re-active tools are
appropriate for less feedback and more professional end-users.

C. Assessment

Our interviews show that developers constantly need to
assess the potential of user feedback to improve their software
and its impact within the user community. All studied subjects
confirmed that they would appreciate tool support for this
assessment, because it may influence the further development
plans. When asked how they would estimate the importance
of user feedback, our subjects specified two main measures.
First and foremost, the frequency of specific feedback, i.e. how
many users provided the same or similar feedback. Most sub-
jects utilize this quantitative benchmark already today, but in
most cases they estimate it manually. S1 particularly regretted
that they are therefore currently only able to react slowly on
community trends: “We can only measure the frequency when
we already upset our users.” The main factors slowing down

reaction time include low visibility of existing feedback for
other users, scattering of feedback across multiple channels,
as well as manual analysis of user feedback by developers.
Second, all subjects would include an assessment of the
individual user who reported the feedback into the benchmark,
and specified several measures for such an assessment. They
considered it important to know for how long and how often
the reporting user has used the application, as pointed out by
S1: “If we have a user who uses our software twice a day
for several hours, her feedback is probably more important
than feedback of a casual user who ’accidentally’ bought the
software.” S2 and S4 would further base their assessment of
a user on the past experience with that user: “Frequency is
important. But if a user always reports inappropriate feedback,
we would not want this to be highly prioritized. Quality over
quantity.” [S2]. All subjects stated that they manually keep
track of particularly helpful users. However, only S2 and S3
also treat their feedback differently, which typically means
reading it first. Moreover, all studied companies, except C1,
let these users know that they are important, for instance by
thanking them via email (C3) or by issuing coupons (C3, C5).

Hypothesis 17. To support impact analysis, tools should
measure the frequency of user feedback and provide developers
with an individual assessment of the reporting user.

VI. DISCUSSION

We discuss the implications of our findings for researchers,
practitioners, and tool designers and summarize the limitations
of our study.

A. Implications

User feedback contains important information for develop-
ers which helps to improve software quality and to identify
missing features. In order to assess its relevance and potential
impact, developers need to analyze the gathered feedback.
High effort is required for this analysis, as developers mostly
accomplish it manually.

1) Implications for Researchers: In order to facilitate user
feedback analysis, researchers should study main factors that
contribute to its complexity and explore how it can be au-
tomatized. We see two main implications. First, since user
feedback is typically natural language text whose quality might
be poor, it is difficult to determine its content automatically.
Research should explore how to extract information from such
artifacts, for instance using microtext understanding or island
parsing methods. Second, user feedback often lacks important
context information which can facilitate understanding and
help developers to reproduce reported issues. Consequently,
researchers should examine how context information can be
made available for the analysis process.

2) Implications for Practitioners: Based on our results, we
give three recommendations to developers. First, know your
audience. Our study suggests that different user audiences
provide feedback in different ways. Consumers seem to re-
port ad-hoc, while professional users might elaborate more
on their feedback. In either case, developers should provide

960

suitable channels to gather the specific kind of feedback.
Second, reduce the number of feedback channels. We found
that feedback is typically scattered across several channels.
As a consequence, developers merge feedback gathered over
multiple channels, which reduces traceability and increases the
gap to their users. Developers should identify which feedback
type is supported best by which channel and discontinue other
channels. Channels which allow for two-way communication
should be preferred. Third, educate your users. Companies
who decide to take user feedback seriously need to explain
to their users how to provide helpful feedback. For instance,
multiple requests within one message might complicate its
analysis, while indicating the feedback type might be helpful.

3) Implications for Tool Designers: User feedback is a
rich source of information. Our study shows that developers
work through this information in order to create conventional,
prioritized development tasks. Developers need tool support
to facilitate consolidation, structuring, analysis, and tracking
of user’s feedback, especially when the occurring volume is
high. Tool designers should investigate how developers can
be assisted during these tasks. Our results suggest that novel
tools should identify similar and duplicate reports, capture the
feedback type, and document the affected feature. Developers’
main information needs include the impact of feedback in
terms of its frequency as well as an assessment of the
individual reporting user, for instance how often and for how
long she has used the software or how often she has already
reported.

B. Limitations

As with any research methodology, our choice of research
methods has limitations.

1) Construct Validity: With this study we aimed at explor-
ing problems and information needs in current user involve-
ment practice. Construct validity therefore measures whether
these concepts can be correctly reflected by means of inter-
views. First, interviews obviously rely on the statements of the
participants, which might be subjective. While subjectivism
is difficult to eliminate in interviews, we limit its effects by
basing our findings exclusively on the statements of multiple
subjects. Further, the semi-structured nature of our interviews
allowed us to react on participants’ statements, and to ask why-
questions whenever needed, while guaranteeing at the same
time that all participants answered the same questions. Second,
subjects might not even be aware of occurring problems. To
limit this effect, we concretized questions related to problems,
asking which tasks take much time, are subjectively difficult,
and which information is needed to accomplish them. Other
studies (e.g. [7], [9], [18]) support our findings, what makes
us confident that the identified problems are real. Ensuring
construct validity for empirical studies of software developers
is always a complex task, specifically as such studies typically
require the researcher to abstract from observed behavior
or gathered information. Therefore, we encourage other re-
searchers to replicate this study or enhance it, for instance by
means of task observations.

2) Internal Validity: Because our study is of exploratory na-
ture, its internal validity is determined mainly by the evidence
we have used to generate our hypotheses. We therefore discuss
the two main factors which might affect the soundness of our
observations, and illustrate how we tried to limit them. First,
the interviewer might be biased towards the study proposition.
In other words, he might have had a priori expectations and
assumptions, and could have sought to confirm them. In order
to limit this threat, we recorded the audio of each interview,
transcribed the recorded audio, and sent the transcription back
to the interviewees asking for corrections. Likewise, we sent
the participants a copy of our hypotheses, and requested
their feedback. All participants agreed with our findings.
Second, participants might have given answers which are not
completely reflecting their work practice, because they knew
the results would be published. While this threat can never
be completely eliminated in interviews, we addressed it by
guaranteeing the complete anonymity of our participants and
their companies.

3) External Validity: The applicability of our findings has
to be established carefully. The main limit to the general-
izability of our findings results from the fact that we have
interviewed only five subjects. We could increase confidence
in our hypotheses by interviewing more subjects from a larger
cross section of application domains and user audiences. On
the other hand, all studied subjects are software professionals
with over 3 years of practical experience in industrial compa-
nies and fill different roles. Moreover, studied projects span
different domains, different amounts of users, and different
user audiences, which makes us confident that our findings are
representative. Finally, this study is of exploratory nature and
was not designed to be largely generalizable. Its main idea
is to explore and understand how developers deal with user
feedback during software evolution, and which problems they
encounter. To this end, we formulate hypotheses which should
be validated by future studies of larger populations. Conse-
quently, we avoid answering yes/no questions but concentrate
on identifying common, real problems and information needs.

VII. RELATED WORK

Most studies about user involvement in practice explore
the “early” phases of the software development lifecycle and
specifically investigate how and to which degree users are
involved [17], and which effects such involvement has on
product acceptance [10]. Only few other studies are concerned
with exploring how developers work with user feedback during
software evolution, and which problems they encounter.

Ko et al. [9] found two main factors which constrain
evolution decisions in development teams. First, developers
were more likely to address feedback they believed to be
shared by the majority of the users. Similarly, conflicting
needs and preferences among the users reduced the probability
for a feedback to be addressed. Our study confirms these
findings (Hypotheses 9 and 10), and additionally concludes
that developers often lack the necessary information to be
able to assess the stake size for a given feedback (Hypothesis

961

12). The second factor is related to how deep an intervention
would be required to address a specific user feedback. Corre-
spondingly, our subjects reported that user feedback should fit
into the product roadmap. Ko et al. conclude that feedback is
a significant source of knowledge about user practices, what
is confirmed by our results (Hypothesis 5). Interestingly, the
authors argue that user feedback should be treated as a signal
that further research is needed rather than as a guide for
what to change. The main reason lies in the way developers
currently react to user feedback which can harden the original
software design. In contrast, we claim that developers need
novel tools which fill their information needs, and allow them
to measure the impact of user feedback.

Heiskari and Lehtola [7] investigate user involvement in
practice without focusing on a specific development lifecycle
phase, and identify several challenges which are confirmed
by our study. First, similarly to our results the authors found
that user information is scattered, unorganized, and difficult to
access (Hypothesis 1), and that there is no clear and common
process on understanding users (Hypothesis 4). Second, while
feedback and other user information were considered impor-
tant, the authors found that there is too little of this information
available for developers (Hypotheses 5 and 12). Moreover, the
study revealed that determining the average end-user opinion
is a hard task, which our interviews confirm (Hypothesis 10).
Finally, the authors discovered a need for the integration of
user knowledge into existing development processes. We argue
that this supports our finding that developers need tool support
to deal with user feedback (Hypothesis 14).

Zimmermann et al. [18] specifically focus on developers’
problems with bug reports in open source projects. One of
their main results is that poorly written reports as well as
missing information particularly hinder developers from un-
derstanding and reproducing issues, which is also confirmed by
our interviews (Hypothesis 10). The authors further revealed
a mismatch between information needed by developers and
information which users actually provide, what intensifies our
Hypothesis 4: According to our subjects, error reports typi-
cally include automatically generated information to support
developers. Finally, the authors showed that well-known users’
feedback is likely to get more attention, regardless of its
importance. Similarly, our interviews showed that developers
are interested in an individual assessment of the reporting user
(Hypothesis 17).

VIII. CONCLUSION

We reported on an empirical case study with five profes-
sional, small and medium-sized software development compa-
nies, exploring the current practice of user involvement during
software evolution. We found that user feedback contains im-
portant information for developers, helps to improve software
quality and to identify missing features. However, to assess
its relevance and potential impact, developers need to analyze
the gathered feedback, which is mostly done manually, in spite
of its typically high volume – if it is done at all. Our results
suggest that tools which consolidate, structure, analyze, and

track user feedback would help to reduce the effort required
by developers to deal with end user feedback. We claim
that future work should aim at developing the corresponding
tools to facilitate continuous user involvement. We suggest
to perform empirical studies such as content analyses of user
feedback to establish foundations and refine tool requirements.

ACKNOWLEDGEMENT

Our thanks go to all study participants and to Walid Maalej,
Helmut Naughton, Tobias Roehm, and the anonymous ICSE
reviewers for their valuable feedback. This work was sup-
ported by the EC (FastFix project, grant FP7-258109).

REFERENCES

[1] M. Bekker and J. Long. User Involvement in the Design of Human-
Computer Interactions: Some Similarities and Differences between
Design Approaches. In S. McDonald, Y. Waern, and G. Cockton,
editors, People and Computers XIV - Usability or Else!, pages 135–
147. Springer, 2000.

[2] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting
Empirical Methods for Software Engineering Research. In F. Shull,
J. Singer, and D. I. K. Sjøberg, editors, Guide to Advanced Empirical
Software Engineering, pages 285–311. Springer-Verlag London, 2008.

[3] B. Flyvbjerg. Five Misunderstandings About Case-Study Research.
Qualitative Inquiry, 12(2):219–245, Apr. 2006.

[4] J. D. Gould and C. Lewis. Designing for Usability - Key Principles
and What Designers Think. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems, pages 50–53, Boston, MA,
USA, 1983. ACM.

[5] J. Grudin. Interactive systems: bridging the gaps between developers
and users. IEEE Computer, 24(4):59–69, 1991.

[6] J. Grudin. Systematic Sources of Suboptimal Interface Design in Large
Product Development Organizations. Human-Computer Interaction,
6(2):147–196, June 1991.

[7] J. Heiskari and L. Lehtola. Investigating the State of User Involvement
in Practice. In Proceedings of 16th Asia-Pacific Software Engineering
Conference, pages 433–440, Penang, Malaysia, 2009. IEEE.

[8] A. Kanstrup and E. Christiansen. Selecting and evoking innovators:
combining democracy and creativity. In Proceedings of the 4th Nordic
conference on Human-computer interaction, pages 321–330. ACM,
2006.

[9] A. J. Ko, M. J. Lee, V. Ferrari, S. Ip, and C. Tran. A case study of post-
deployment user feedback triage. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software Engineering
- CHASE ’11, pages 1–8, Honolulu, HI, USA, 2011. ACM.

[10] S. Kujala. User involvement: a review of the benefits and challenges.
Behaviour & information technology, 22(1):1–16, 2003.

[11] W. Maalej and D. Pagano. On the Socialness of Software. In
Proceedings of the International Conference on Social Computing and
its Applications, Sydney, Australia, 2011. IEEE.

[12] D. A. Norman and S. W. Draper. User Centered System Design; New
Perspectives on Human-Computer Interaction. Erlbaum, 1986.

[13] D. Pagano. Towards Systematic Analysis of Continuous User Input.
In Proceedings of the 4th International Workshop on Social Software
Engineering, pages 6–10, Szeged, Hungary, 2011. ACM.

[14] D. Pagano and W. Maalej. How Do Open Source Communities Blog?
International Journal on Empirical Software Engineering, (May), 2012.

[15] C. Robson. Real World Research. Wiley & Sons, 3rd edition, 2011.
[16] P. Runeson and M. Höst. Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering,
14(2):131–164, Dec. 2008.

[17] K. Vredenburg, J.-Y. Mao, P. W. Smith, and T. Carey. A survey of
user-centered design practice. In Proceedings of the SIGCHI conference
on Human factors in computing systems - CHI ’02, pages 471–478,
Minneapolis, Minnesota, USA, 2002. ACM.

[18] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and
C. Weiss. What Makes a Good Bug Report? IEEE Transactions on
Software Engineering, 36(5):618–643, Sept. 2010.

962

