
System Design Document

ARENA Project

February 12, 2003

Contents

1 Introduction 4

1.1 Document Overview . 4

1.2 Design goals . 4

2 Proposed System 6

2.1 Overview . 6

2.2 Subsystem decomposition . 6

2.2.1 Subsystem Decomposition . 6

2.2.2 Subsystem Services . 8

2.2.3 Interaction of Subsystem Services . 15

2.3 Hardware/Software Mapping . 18

2.3.1 General System Performance . 18

2.3.2 Input/Output Performance . 18

2.3.3 Processor and Memory Allocation . 18

2.3.4 Connectivity and Network Infrastructure 20

2.3.5 Modern input device . 20

2.4 Persistent Data Management . 21

2.4.1 World Data . 21

2.4.2 Adventurer Data . 21

2.4.3 Data Management design rationale . 22

2.5 Access control and security . 22

2.6 Global software control . 22

2.7 Boundary conditions . 23

2.7.1 Prerequisites . 23

2.7.2 Start-up and shutdown . 23

2.7.3 Exceptions . 24

A Glossary 25

2

List of Figures

2.1 Subsystem Decomposition . 7

2.2 Subsystem eventflow by starting the game . 16

2.3 Subsystem interaction . 17

2.4 Allocation of SWORD subsystems to hardware 19

2.5 Interfaces and Operating Systems used by SWORD hardware 20

2.6 Start-up and shutdown . 23

3

1 Introduction

1.1 Document Overview

This System Design Document (SDD) presents the technical details of the ARENA system
design. More information about the specific features and the motivation for ARENA can be
found in the Requirements Analysis Document (RAD) and the Problem Statement.

This document starts with an introduction to the architecture and the design goals to
be considered. Then it presents the proposed system architecture by describing the subsys-
tem decomposition and the subsystem services, defining the hardware/software mapping and
explaining the management of persistent data. Access control and security issues are ad-
dressed. The global software control and boundary controls are described. Finally a glossary
of important terms is provided.

1.2 Design goals

• Employment of the FRAG framework:
The FRAG framework provides distributed object management and state replication
between peers. To develop a game, only the creation of objects and algorithms is nec-
essary. The framework is work-in-progress and is supposed be modified and extended.

• Algorithmically defined game world:
The world in which the game takes place is created by a randomized algorithm, so two
instances of the game are always different.

• Restricted access to games:
Players can define buddies - other persons, who are allowed to join the game. These
players are stored in the buddy list and play on the same team as the initiator, if the
game is set to team play mode.

• Game setup without network configuration:
On startup, the system detects running games in the LAN and offers to connect to one
of them or start a new game. The user doesn’t have to set up network parameters like
protocols, addresses or ports. Not even the initiator of a game needs to set game-specific
options other than an unique name for his/her game. The Rendezvous architecture offers
zero-configuration network service discovery and usage, thereby eliminating the need to
develop a proprietary game detection/announcement protocol.

4

1 Introduction

• No connection to a server:
Even people without connection to the Internet or another wide area network can play
the game (over Wireless LAN, Bluetooth, or any other local network).

• Platform-independent, open standard-based game design:
The system is platform-independent to allow usage on a wide range of devices, even
Java-enabled handheld devices as soon as they become powerful enough. Therefore, all
code is written in Java, with the possible exception of I/O-driver and lower-level network
components, such as the Mac OS X Rendezvous integration.

• Integration of a new I/O device:
Research in Augmented Reality, Human Computer Interaction, and related fields pro-
duced new devices like data gloves, head trackers or 3D glasses. The game uses at least
one new input device,in this case a gyroscope with a head mounted display. It is also
considered to make use of speech recognition.

• Exhibition of interactive response time:
The game is fast enough to enable realtime playing (at least 12 frames/sec) on the
provided iBooks over Wireless LAN.

• Robustness:
The game should be stable and playable even when losing network connection.

• Modifiability:
It must be easy to change and extend the components of the game, e.g. the GUI.

5

2 Proposed System

2.1 Overview

This section describes the requirements of the distinct proposed software architecture. We
describe the subsystem decomposition in the way we designed and planned to implement it.
This includes the decomposition as well as the proposed services and their interaction. These
decisions are based on the RAD (Requirement Analysis Document) and the PS (Problem
Statement). We also describe our design decisions and reasons for the hardware/software
mapping, the consistent data management, the access control handling, the global software
control and the boundary conditions.

2.2 Subsystem decomposition

The system is divided into nine subsystems, which are described in terms of their services.

2.2.1 Subsystem Decomposition

The following diagram shows the system decomposition and the included subsystems:

6

2 Proposed System

Figure 2.1: Subsystem Decomposition

7

2 Proposed System

Launcher The Launcher is the initiating subsystem of SWORD.

SWORD Control The SWORD subsystem is responsible for controlling the specific
(concrete) object instances of the game.

SWORD World The game world subsystem is responsible for creating the game
world; using a fractal algorithm, it computes the world which cor-
responds to the specific mission. It initiates the game with all
necessary characters and items and places those into the algorith-
mically created game world.

Bots The Bots (formerly AC or ArtificialControl) subsystem is respon-
sible for instantiating the Artificial Players of the game; these are
the opponents of the Human Players - the real players in the real
world; the Artificial Players are controlled by an algorithm.

SWORD IO The SWORD IO subsystem is responsible for providing a visual
interface used by the Human Player to navigate his Adventurer
(character) in the game.

Game The Game subsystem is responsible for initiating and joining
games and for handling all related management issues.

Object The Object subsystem is responsible for the objects of the game
world; especially sending and getting their state update to, respec-
tively from the network component.

Network The Network subsystem is responsible for exchanging connection
data between the local peer and other peers on the network.

Visualisation The Visualisation subsystem is responsible for drawing all visual
objects of the game on the screen.

2.2.2 Subsystem Services

This section describes the services each subsystem provides along with their prerequisites and
output products.

8

2 Proposed System

2.2.2.1 SWORD Control Subsystem

Player The Player is the common interface used for navigating the Adven-
turer in the game world by the Human Player from the real world.
This interface is also responsible for management commands, e.g.
loading and saving games and the communication between the
players.

2.2.2.2 SWORD World Subsystem

Game A Game represents a SWORD game instance, which is created af-
ter the start of SWORD and is inheritated from GameImplemen-
tation; this class instantiates the game with its algorithmically
created world and the mission chosen; it contains all items and
adventurers of the game.

interface of subsystem initGame: This service initializes the SWORD-game. Especially
the world, mission and items. The parameter is GameManager.

Adventurer An Adventurer represents all characters that are in SWORD (e.g.
actors, monsters, ...) and is the boundary object to real player and
also to the Artificial Players. The basic actions an adventurer can
perform are:

interface of subsystem useItemWith: The item is used with another item.
dropItem: The item is dropped to the floor and attached, and is
therefore visible for all again.
move: The position of the adventurer is changed to the new posi-
tion.
lookAt: The details of an item are shown.

World A World is an instance of a chosen game mission, which is created
right after the SWORD game has started. Every game world has
its own algorithmically designed and unique environment.

Mission A Mission represents a scenario of the game and the steps, which
the players should accomplish to win the game.

Item All not moving objects are items with the basic task useItem.
The information about the item is stored in its properties. An
item can be a SingleItem or an ItemContainer which can store
ItemContainers or SingleItems.

9

2 Proposed System

2.2.2.3 Bots Subsystem

ArtificialPlayer The Artificial Player is algorithmically created service which nav-
igates the adventurers not controlled by the human players in the
real world. Those adventurers in the game world could be op-
ponents or helpers of the adventurers, navigated by the human
players.

10

2 Proposed System

2.2.2.4 SWORD IO Subsystem

UserInterface The user interface distributes commands, given from the player in
the real world which navigate the Adventurer in the game world.
This is the main interface between the real world and the game.
The UI’s task is to interact with the user by displaying informa-
tion provided by other subsystems and by fetching user input and
altering the data, if necessary. The User Interface will provide a
set of user-friendly windows, e.g. login, the main game GUI and
status messages.
In turn, the UI subsystem is responsible for getting user input
from the SWORD subsystem and delegating those events to the
Game subsystem and the Object subsystem. The user inputs are
voice, keyboard, mouse and headtracker commands.
The GUI consists of one full screen window which is divided into
three main areas. On top there is the area where status informa-
tion about the character such as strength and mana is provided.
Additionally there is a menu where the human player can choose to
exit, save and pause the game, to communicate with other players
and to set the options of his screen. The biggest area in the middle
of the screen provides the game with the world surrounding the
character, but only in the direction the character is facing to. Here
the objects of the world like items and other players are displayed
to the player. The bottom area of the screen itself is divided into
three sections which display the item container, the abilities of the
character and the map. The item container shows the items the
character has collected during the game. If the character drops or
loses an item it is removed from the item container and thus no
more displayed to the player as an item he possesses. The area in
the middle displays the abilities the character has achieved dur-
ing the game, such as magic spells. On the right side there is the
map which displays a bird perspective of the world surrounding
the character including hills, rivers, streets, buildings and villages.

Painter The Painter class manages the visualization of the current GUI
and the individual message windows. It also uses the draw methods
provided by the DrawManager in the Visualization subsystem.

interface of subsystem showWindow : Puts a message window on the screen. The param-
eters the window’s name and the message itself.
setGUISkin: Provides a method to change the GUI skin. Parame-
ter is the name of the skin file.

11

2 Proposed System

2.2.2.5 Game Subsystem

GameManager The GameManager class handles the creation and joining of
games. It provides the interface for interaction with the under-
lying layer (Network components or ARENA itself). The actual
work of creating a game with objects etc. is delegated to a sub-
class of GameImplementation.

interface of subsystem joinGame: This method provides the functionality of getting into
a running game. The parameters are the names, the IP addresses
and the ports.
initGame: makes a forward call to the game implementation in
which the logic of the game is specified.
newPeer : adds one new peer to the PeerManager. The parameters
are the name, the IP address and the port.
setImplemention: sets the GameImplementation to the gameMan-
ager

GameImplementation The GameImplementation class implements a concrete FRAG-
based game, in this case the SWORD game.

interface of subsystem gameJoined : to join to a existing game using the gameManager as
parameter.
initGame: initialize the game with the game manager as parameter

12

2 Proposed System

2.2.2.6 Object Subsystem

ObjectManager The ObjectManager class manages all the objects in the game
and distributes the control of an object among the peers. The
ObjectManager class sends state updates for its objects to the
other peers.

interface of subsystem storeObject : Puts the objectdata into the ObjectTable. Stored is
the object’s name and objectdata.
processEvent : Process the specified event concerning to the object
class type. The event types are: ObjectUpdateEvent, ObjectCon-
trollerEvent, ObjectKilledEvent and ObjectActionEvent.
checkModified : checks if the objects has been modified. The pa-
rameter is the name of the object.
sendObjectUpdate: creates an new ObjectUpdateEvent which is
handled in the processEvent method. Parameter is a ObjectData
object.
acquireControl : puts the control of the object to the player of this
instance of the game. Parameter is the object name.
releaseControl : releases the control of the object to the player of
this instance of the game. Parameter is the object name.
checkAllFocuses: checks for all object the focus property.
objectMoved : is called when a object is moved. Parameter is the
object name.
releaseAndKillObjects: delete the object from the object table and
calls checkAllFocuses. Parameter is the current owner of the ob-
ject.
objects: Returns a hashtable which consists all of the objects in
the objectmanager. No parameters
importObjects: Imports a hashtable of objects into the object table.
Parameter is a hashtable.

ObjectData The ObjectData class handles the state of a single object, e.g.
position. Most objects (Item, Adventurer, ..) from the SWORD
subsystem have a associated ObjectData class.

ObjectBehavior The ObjectBehavior class manages the behavior of an object and
is associated from the ObjectData class.

13

2 Proposed System

2.2.2.7 Network Subsystem

PeerManager The PeerManager class manages the peer connections for the local
peer and deals with any unexpected loss of connections. Therefore
it provides a service for addingPeers with the parameters: IP ad-
dress and player name. The discovery of new peers is done by the
PeerDiscovery component.

interface of subsystem peerDead : creates a PeerDeadEvent and removes the peer from
the peer manager. Parameter is the PeerConnection.
addPeer : Adds the peer to the peerManager with the IP address
and the port number. Parameter is the name, the IP address and
the port number.

PeerConnection The PeerConnection class represents a single connection to an-
other peer, including the corresponding socket, in- and output
streams.

interface of subsystem establishConnection: Establish a connection to a peer manager.
Parameters are peermanager, the ip address and the port number.
processEvent : Sends a event over the network. Parameter is the
event.

2.2.2.8 Visualisation Subsystem

DrawManager The DrawManager distributes common draw methods for visual-
ization and has a method, that calls the visualization-method of
the ObjectPainter interface. The DrawManager gets the current
GameManager and current graphic container as parameter.

interface of subsystem drawAll : This method provides functionality for calling the draw
method on each object which it gets from the ObjectManager.

ObjectPainter The ObjectPainter Interface provides an interface for the visualisa-
tion of single objects. The ObjectPainter implementation manages
the allocation of the visualisation resources and passes them to the
assigned DrawManager visualisation method.

interface of subsystem draw : This method makes a forward call to the DrawManager
where the real drawing things are done so that the hole drawing
things aren’t transmitted over the network. The parameters are
the ObjectData and the DrawManager.

14

2 Proposed System

2.2.2.9 Launcher

Gladiator This is the main application to run a game. Gladiator initializes
PeerDiscovery and requests a list of running games and peers.
Starts the game by calling the GameManager and passing the
parameters: IP addresses and player names.

PeerDiscovery Discovers running games and peers.

2.2.3 Interaction of Subsystem Services

This section shows the interaction among the subsystems resulting from the user tasks de-
scribed in the RAD.

When creating a game a service is called which is responsible for the initialization of the
world, mission and items.
Players who want to join are detected by PeerDiscovery which calls a service joinGame in
GameManager with the parameters IP address, port and the name of the player. The GameM-
anager delegates this to the PeerManager which creates a new PeerConnection. As described
in figure 2.2. To visualize the game the DrawManager gets the objects that should be drawn
on the local screen from the ObjectManager. Therefore the getObjects service in ObjectMan-
ager is called which returns an enumeration containing ObjectData objects. These objects
are drawn by the ObjectPainter.

The interaction between real and game world is done by the UserInterface. Any input is
given to Player which calls the basic services in Adventurer for manipulating itself: move,
attack, pickupItem, dropItem, lookAtItem and useItemWith.
Mostly the same is done by the ArtificialPlayer apart from generating the input algorithmi-
cally.

When an Item or Adventurer changes its position the ObjectManager is notified and
creates an event consisting of important data, e.g. the new position. This event is broadcasted
to the PeerConnections. For clarification see the overview figure 2.3.

15

2 Proposed System

Figure 2.2: Subsystem eventflow by starting the game

16

2 Proposed System

Figure 2.3: Subsystem interaction

17

2 Proposed System

2.3 Hardware/Software Mapping

Based on the task and client feedback our system consists of one or more laptops running
MacOS X. Development is thus done based on this platform.

Figure 2.4 gives a general overview of the main architecture and their relationship to
SWORD.

Network communication is managed by FRAG using a TCP/IP based protocol. Java was
chosen as a main programming language to achieve the goal of compatibility with a future
usage of the framework. However some of the I/O drivers will be written in C++.

The target environment consists of the following parts:

1. Laptop: Apple iBook, Motorola G3 processor, running MacOS X

2. Head Mounted Display

3. Inertial Tracker Intersense InterTrax 2

Figure 2.3 is a summary of the mapping between hardware components and the software
environment.

The SWORD game prototype will be playable but restricted to simplified graphics and
gameplay due to time restrictions. However, the FRAG framework will be fully functional,
and the game can be used as a prototype for future development.

2.3.1 General System Performance

Due to the game nature of SWORD it is necessary that we have fast response times for the
information displayed to the user.

For any network request SWORD aims at a maximum response time of just a few seconds.
However, SWORD cannot guarantee a specific response time, due to circumstances beyond
our control like heavy network traffic or wireless LAN interference.

The general performance also depends on the implementation of the FRAG infrastructure,
since most interactions between subsystems as well as between the system and the user are
based on the FRAG services.

2.3.2 Input/Output Performance

SWORD is expected to provide at least 12 frames per second on the output device.

2.3.3 Processor and Memory Allocation

All computation is being done by the 700 Mhz G3 processors of the laptops and by their
graphic chips. However, if multiple laptops are used, different parts of the world are to be
computed by different units. As well, in such a case, object control is also distributed between
laptops. Concerning the memory allocation it’s always good to have enough RAM installed
so the computer doesn’t have to outsource data on the HD. We use iBooks with 640 MB of
RAM.

18

2 Proposed System

Figure 2.4: Allocation of SWORD subsystems to hardware

19

2 Proposed System

Component Interface Operating System Connected to
Laptop USB, FireWire, VGA, WaveLAN Mac OS X —
HMD VGA — laptop

Inertial Tracker Serial via USB adapter — laptop

Figure 2.5: Interfaces and Operating Systems used by SWORD hardware

2.3.4 Connectivity and Network Infrastructure

The laptops are connected with 11 Mbit wireless LAN or 10/100 Mbit Ethernet.

The connectivity is done via FRAG which provides a peer-to-peer architecture using a
TCP/IP based protocol. TCP/IP allows reliable data transfer as long as the connection
remains active. A wireless connection can fail if the components move out of range or if
extensive interference consistently weakens or garbles the signal.

The anticipated bandwidth requirements should be in the order of magnitude of video
streams, so several hundred Kb/sec would result in an acceptable user-system interaction
performance. However, plans to integrate speech recognition and modern I/O devices may
require higher bandwidth or might delay the overall response as the CPU has more data to
handle.

Since the system uses pro-active routing (each peer maintains a connetion to every other
peer), the bandwith expense grows quadratically (n(n−1)

2 connections for n peers). For that
reason, the prototype might not be able to run according to the requirements with more than
about 5 peers on WLAN and 15 peers on 100 Mbit Ethernet, respectively.

2.3.5 Modern input device

After considering multiple modern devices we had available, we decided to use a head mounted
display with head motion tracker and speech recognition as the modern input stated in the
requirements. The head mounted display doesn’t require special drivers as it uses the stan-
dard VGA output of the laptop. The head motion tracker however does require a driver. It
will be implemented as independent driver program, written in C++, and connected to the
SWORD with the TCP/IP protocol inside one system locally or alternatively, remote. Re-
mote connection might be useful for performance issues, when another laptop can calculate
the input of the device. However, it should be possible to run it all on one system.

Due to the 2D nature of first edition of SWORD, its likely that the head motion detector
will have following control features for the system:

• Axis 1 (Yaw) - not used or implemented in the system later.

• Axis 2 (Pitch) - Head forward makes the adventurer running forward, and head back-
wards makes the adventurer moving backwards. It will be most likely a digital (move/not
move) condition, speed independent on the angle of head.

• Axis 3 (Roll) - Head left/right will make the adventurer rotate left and right. Rotation
speed will be most likely done in a few possible grades. (triggered by 5, 10, 15 degrees

20

2 Proposed System

angles). However, it might be found reasonable to implement this control as simple two
state signal, too, according to the Adventurer class interface.

Another input device is the speech recognition. It is based on the JavaSpeechFramework
and will be written in Java. We will use this to control the main functions in SWORD (for
example: save game, resume to game, leave game and another) These actions will be controlled
by speech recognition when you use the head mounted display because you can’t find a key
on the keyboard then. You can also use the speech recognition when you don’t use the head
mounted display as alternative input device to keyboard or mouse.

2.4 Persistent Data Management

Several properties of a game can be saved to a file system and loaded at a later point in
time. The goal is to allow a player to suspend and resume a game in a — for both the user
and the system developer — simple and effective way that avoids inconsistencies or usability
issues. The data describing the game world and the data describing an adventurer are saved
independently.

2.4.1 World Data

The world consists of the generated map and the items located on the map, including items
that are owned by adventurers. If a player leaves the game he is asked if he wants to save the
World Data. The data that is actually saved contains the seed key for the World Generation
Algorithm and all the items in the game with their current (at the time of saving) position.
The adventurers themselves are not saved as part of the world.

Saving the World Data is optional on leaving the game; loading the World data is optional
on starting as an alternative to Create New Game and Enter Game.

2.4.2 Adventurer Data

The properties (abilities, strength, life power, magic power) of an adventurer can be saved
and re-loaded at a later time and also for different game worlds and missions.

Moreover, the position data of an adventurer is saved on exiting, allowing a player to
resume a game at a later point in time starting at the same position. When a player exits the
game, all items that were in the inventory of the adventurer reappear on the map, about at
the position where the adventurer left the game.

Saving the Adventurer Data data is done automatically on leaving the game. It is not
possible to revert to an earlier status during or after the game. Loading the Adventurer Data
is also done automatically at startup; there is also an option to create a new adventurer
character

21

2 Proposed System

2.4.3 Data Management design rationale

This approach has two main advantages. First, it allows a player with a mission-critical item
to leave a game without blocking the other players from finishing the mission. Moreover,
when the player resumes or re-joins the game, he can instantly regain all items he had in his
inventory when he left the game (of course only if not another Adventurer in the game has
already picked up the items from this place).

This concept also avoids inconsistency since a player who has suspended a game and wants
to continue the game always has the possibility to join the game, which has been relaunched
by some other player or still in progress, or himself relaunch the game in the state when he
has left it. One the other hand merging two relaunched games is impossible.

Saving World Data and Adventurer Data indepentdently allows the player to develop his
Adventurer over several games. This gives the game a role-playing character and fits fine with
the concept of property-defined characters types.

Making the Adventurer Data auto-saved and not recoverable makes it important for the
player to take care of his character and emphasizes the role-playing aspect. A player who loses
his character has to start over again.

2.5 Access control and security

In a MOG (Multiplayer Online Game) with a dedicated server the operator of the server
usually has the privilege to restrict the access to a running game. Moreover, by quitting the
game on the server machine, he/she forces the other players to leave that particular game. In
a peer-to-peer world running a distributed application does not depend on a single machine
anymore, but the need of access control remains. Since all peers are equal, each one must have
the same control rights. Therefore the access to the game is restricted by a password, which
is set by the initiator of the game. The password is sent to all peers present upon initiating.
This is the only initiator-specific task regarding access control. If a person wishes to join on a
later stage, he/she can contact any player and obtain the password via chat mode or e-mail.
Following alternatives of the password-based access control were discussed:
- asymmetric cryptographic process deploying public/private key pair. This alternative is too
difficult to be implemented on time.
- no access control at all. This alternative is easy to implement but conflicts with the PS.

2.6 Global software control

The following section will describe the global software control flow that means the sequencing
of actions in our system. There are three types of control flow paradigms: procedure-driven,
event driven or threaded control flow paradigm. In our multiple System control, it is possible
to select different control paradigms for different components.

When selecting components for the Network and Game subsystems of ARENA, we ef-
fectively restricted the alternatives for control flow mechanisms for the game organization
part.

22

2 Proposed System

Figure 2.6: Start-up and shutdown

Our system basically use an event-driven flow control. Whenever an event becomes avail-
able, it is dispatched to the appropriate object, based on information associated with the
event. The GameManager class creates three event dispatcher classes: a remote dispatcher
that relays events to all other peers, a local dispatcher that relays events to the GameMan-
ager and the ObjectManager.

We use also a threaded control flow in the PeerConnection. Each PeerConnection is han-
dled by a thread. The system can create an arbitrary number of threads . The PeerConnection
class is responsible for serializing the outgoing events and sending them over the network con-
nection as well as for deserializing the incoming events from the network connection and
sending them to the local event dispatcher.

2.7 Boundary conditions

2.7.1 Prerequisites

For the peer to successfully run and participate in network games, there must be a physical
network connection, for example wireless LAN. Further setup steps are not required. The
player does not have to enter any network parameters such as IP address and port number.

2.7.2 Start-up and shutdown

Here we describe what has to be done while starting or ending the system.

Start-up and login When a player is logged in to ARENA he has the choice among a variety
of network games. If he decides to play SWORD the player can choose to start a new game,
to load a game or to join a game (see chapter about Persistent Data Management). In the
case the player starts a game he can decide which other players are allowed to join him. After
that he has to specify a password for his buddies. The other way round, if a player wants to
join a game he has to choose the game and enter the valid password.

23

2 Proposed System

Configure game options All game options like the size of the window etc. are configured
by the player.

Shut down The game is to shutdown by the player himself. When he leaves the game a
window will appear that reminds the player to save either world or adventurer.

2.7.3 Exceptions

Here we describe how our game should react to exceptions that can occur due to problems
outside the game itself.

Loss of network connection If a peer loses the connection to the network it notifies the
player that the connection has been lost, giving him the chance to restore the network con-
nection by hand. This could for example mean that the player moves to a place where the
signal of the wireless LAN is stronger. The player can continue to play while he is not con-
nected to the other peers. As soon as the network is available again the state replication of
FRAG merges the players state with the state of the other peers. The player is notified that
he is connected again and can continue playing.

When the loss of connection is only short (in the magnitude of a few seconds) the player
is not notified at all. The game-play just continues and, in most cases, the player will not
notice anything.

Loss of another peer If the network connection to just one other peer is lost and the peer
did not quit from the game regularly the player is notified about this fact.

As soon as the peer is available again the player is notified.

As in the case of a total connection loss the player is only notified when the peer is away
for more then just a few seconds.

Inconsistent data If the peer notices that his data and the data of another peer is inconsis-
tent it notifies the player. After the player confirms the notification the peer tries to reestablish
consistency again.

Corrupted persistent data If the peer notices, that persistent data is corrupted, it stops
loading the data and notifies the user.

For example, this could occur when trying to load a saved game from disk, and the file
on the disk has been modified since it has been saved.

24

A Glossary

ARENA
A global software engineering project. The project will develop peer-to-peer multiplayer
online games partly on top of the FRAG framework.
Adventurer
The main character in the game that is controlled by the human player.
Analysis
The model of the desired system containing the object model and the dynamic model.
Boundary condition
A special condition the system must handle. Boundary conditions include startup, shutdown
and exceptions.
Design goals
Quality criteria that a system should achieve. Design goals are often inferred from nonfunc-
tional requirements and are used to guide design decisions. Examples of design goals include
usability, reliability, security and safety.
Examples
illustrate the use of the system with scenarios - instance of a use case
FRAG
A framework that is based on ARENA which especially supports peer-to-peer network
communication, distributed object synchronization and message transport for object-based
2D and 3D game worlds
GUI
Graphical user interface. In SWORD the GUI is the interface through which the human
player controls the adventurer and gets response messages from the system.
Gladiator
A human player who wants to play a network game based on ARENA is called a gladiator.
The application a gladiator starts initializes the PeerDiscovery class and requests a list of
running games and peers. It starts the game by calling the GameManager and passing the
parameters: IP addresses and player names
Human player
A person who is able to play one or more games. This is the actual human sitting in front of
the computer. He or she neither can interact with anything in the game world directly nor
can he or she be manipulated directly by software. In order to communicate with the game
world a human player acts through the adventurer.
Index
Alphabetically list of all requirement elements for accessing specific elements
Mission
A mission represents a scenario of the game and the steps which the players should accomplish
to win the game

25

A Glossary

ODD
Object Design Document
Problem Statement
Brief introduction to the problem including purpose and scope of the desired system
Peer-to-peer architecture
A generalization of the client-server architecture in which subsystems can act both as clients
or servers
Quality Constraints
Nonfunctional requirements
RAD
Requirements Analysis Document
Requirements
Define the problem domain as relevant to the system including following elements: Actors,
User Tasks, Domain Constraints, Quality Constraints on User Tasks
SDD
System Design Document - this document
Services
Functionalities that must be provided by the system (= functional requirements)
Specification
Defines the functionality provided by the system including: Use Cases, Services, Global
Functional Constraints, Quality Constraints on Use Cases, Quality Constraints on Services
Subsystem
Division of the system into subsystems
Subsystem Services
Functionalities that must be provided by the subsystem
SWORD
SWORD is a fantasy game which is developed on top the FRAG framework
World Generation Algorithm
Algorithm that is responsible to generate the game world

26

	Table of Contents
	List of Figures
	Introduction
	Document Overview
	Design goals

	Proposed System
	Overview
	Subsystem decomposition
	Subsystem Decomposition
	Subsystem Services
	Interaction of Subsystem Services

	Hardware/Software Mapping
	General System Performance
	Input/Output Performance
	Processor and Memory Allocation
	Connectivity and Network Infrastructure
	Modern input device

	Persistent Data Management
	World Data
	Adventurer Data
	Data Management design rationale

	Access control and security
	Global software control
	Boundary conditions
	Prerequisites
	Start-up and shutdown
	Exceptions

	Glossary

