
Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2017), Copyright IEEE

Towards the Visualization of Usage and Decision
Knowledge in Continuous Software Engineering

Jan Ole Johanssen∗, Anja Kleebaum†, Bernd Bruegge∗, and Barbara Paech†

∗Technical University of Munich
Department of Informatics

Garching b. München, Germany
{jan.johanssen, bruegge}@in.tum.de

†Heidelberg University
Institute of Computer Science

Heidelberg, Germany
{anja.kleebaum, paech}@informatik.uni-heidelberg.de

Abstract—Continuous software engineering (CSE) includes
activities to continuously evolve software artifacts. Along with
these activities, developers employ knowledge such as usage
and decision knowledge. Usage knowledge helps developers to
understand how users apply software, while decision knowledge
comprises all decisions taken during CSE and their ratio-
nale. However, due to the frequency, extent, and complexity
of knowledge in CSE environments, accessing and processing
knowledge is challenging for developers. We propose a dashboard
for developers that visualizes knowledge from various sources.
This enables developers to follow, reflect, interact, and react
on knowledge in CSE environments. We introduce springboards
that serve as knowledge selectors while the selected extract of
knowledge is visualized in widgets. Widgets allow developers to
gain insight into knowledge. We suggest three widget classes:
spot, compare, and range. We discuss dashboard extensions such
as interaction triggers to add, modify, or combine knowledge.
We plan to implement the dashboard and evaluate it with teams
during software development projects in an industrial setting.

I. INTRODUCTION

In recent years, continuous software engineering (CSE)
evolved as a frequently applied approach to ”develop, release
and learn from software in very short rapid cycles” [1]. CSE
encompasses activities such as continuous integration and con-
tinuous delivery [2]. These activities are characterized by fast
iterations on software increments. Each software increment
carries knowledge, for example regarding its implementation
process or user acceptance. Developers employ this knowledge
to further improve their software. This becomes a difficult
task considering the frequency, extent, and complexity of
knowledge in CSE environments. As part of our previous
efforts to integrate usage and decision knowledge in CSE, we
indicated the need for a dashboard [3]: such a dashboard en-
ables developers to access, visualize, and analyze knowledge.

We focus on usage knowledge and decision knowledge,
since CSE opens new opportunities to integrate both know-
ledge. Usage knowledge, i. e. knowledge of how software is
applied by users, profits from the rapid release of new incre-
ments in CSE. For instance, continuous delivery guarantees
that users always give feedback on the latest version of the
software and enables the prompt replacement of deprecated
software. Decision knowledge, i. e. knowledge of the decisions
taken during software development and their rationale, benefits

from rapid cycles of practices such as merging branches in the
version control system or status changes of issues in the issue
tracking system. These practices involve the documentation of
decision knowledge in commit messages or in issue comments,
respectively. As discussed in our previous work [3], we pose
that the joint consideration of usage and decision knowledge
leads to an improved development process and increased
software quality. However, the combined visualization of this
knowledge is an open question.

In this paper, we introduce a dashboard to visualize both
usage and decision knowledge in CSE environments. Its main
goal is to allow developers to follow, reflect, interact, and react
on knowledge available in CSE environments. Therefore, the
dashboard visualizes data from various sources, such as issue
tracking systems or data analytics platforms. One important
idea is to use springboards. Springboards enable developers
to select points or intervals of interest. Each springboard
provides an individual perspective on a software project. For
instance, a commit springboard visualizes branches and code
commits, while further filters can be applied to highlight
certain aspects. Three widgets—spot, compare, and range—
visualize knowledge associated to the springboard selection.
We suggest that the dashboard should offer possibilities for
visual interaction, enabling basic commands that frequently
occur during the developers’ daily work.

The paper is structured as follows. Section II discusses
visualization approaches of usage and decision knowledge in
literature. Section III describes the components for knowledge
preparation. The dashboard visualization is presented in Sec-
tion IV and discussed in Section V. Section VI sketches our
current and future work and Section VII concludes the paper.

II. RELATED WORK

To the best of our knowledge, the visualization of know-
ledge in CSE—in particular the visualization of different
knowledge types such as usage and decision knowledge at the
same time—has not yet been explored in previous research.

However, there is work regarding the separate visualization
of usage and decision knowledge. For example, the visualiza-
tion of usage knowledge is addressed by Guzman et al. [4]:
they propose visualizations to make user feedback accessible.

Definitive version available at https://doi.org/10.1109/VISSOFT.2017.18

https://doi.org/10.1109/VISSOFT.2017.18

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2017), Copyright IEEE

Analytic platforms provide detailed insight into the application
usage. In general, knowledge on users’ interaction forms the
basis to reiterate user interface designs [5].

The visualization of decision knowledge is addressed by Lee
and Kruchten [6] as well as by Shahin et al. [7]. Hesse et al. [8]
use the DecDoc tool to visualize single design decisions as a
tree of decision components such as arguments or alternatives.
Notably, this work focuses on design decisions and not on
decisions regarding generic software artifacts during CSE.

Sharing and understanding knowledge in agile software
development is important, yet difficult to implement [9].
Alperowitz et al. work on a set of metrics to make knowledge
in agile project courses measurable and provide a visualization
in the form of a report sheet [10]. Elsen introduces a tool to
visualize complex branch structures in git environments [11].

The presented work shares a focus on the visualization of
specific aspects. However, it differs from the work presented
in this paper: we introduce a dashboard that allows for a com-
prehensive and all-encompassing visualization of usage and
decision knowledge related to software artifacts during CSE.
As described in our prior work [3], this dashboard represents
a major part of our research project CURES (”Continuous
Usage- and Rationale-based Evolution Decision Support”).

III. KNOWLEDGE PREPARATION

The dashboard bundles various knowledge gathered from
different sources. Figure 1 illustrates involved components.

Knowledge
Collector

Knowledge
Processor

Knowledge
Manager

Knowledge
Visualizer

Knowledge
Source N

Fig. 1. Preparing knowledge from various sources for visualization.

A Knowledge Collector component is in charge of gathering
knowledge from different Knowledge Sources, such as an issue
tracker, a code repository, a wiki, or an analytics platform.

It provides knowledge to a Knowledge Processor compo-
nent, which prepares knowledge to be visualized in accordance
with other knowledge. This includes important steps of the
knowledge preparation process, for example converting raw
user click streams into a structured sequence of instruc-
tions or linking decision knowledge to an individual commit.
The Knowledge Manager component guarantees access to
the knowledge and stores only newly generated knowledge;
references to the original knowledge sources are used to
avoid data redundancy. The Knowledge Visualizer component
encompasses the key functionality of the dashboard.

IV. KNOWLEDGE VISUALIZATION

In this section, we present our ideas and sketches for a dash-
board to visualize knowledge related to CSE environments. We
first give an overview and then present the visual components
such as springboards and widgets in more detail.

Dashboard

Knowledge

Filter

 Composite Spot

 Compare

Usage Decision

*

*

+ selectKnowledge()

Springboard

+ visualizeKnowledge()

Widget

Developer

*

0..*

1

 Range

CodeCommit Time

Fig. 2. The dashboard’s class diagram depicting the main abstractions
Springboard and Widget. Filter and Knowledge can have further sub-classes.

A. Dashboard Overview

The dashboard contains two main abstractions: Spring-
boards and Widgets. The class diagram in Fig. 2 depicts the
conceptual structure of both abstractions and their relationship
to the participating role, namely the Developer.

A springboard allows developers to specify the scope of
knowledge visualized in the widgets. Therefore, at least one
springboard instance must be present in the dashboard at any
time. Each springboard reflects the project from a different
perspective. We propose three different springboard classes:
Commit, Code, and Time. Each class has a specific relation to
both usage and decision knowledge and therefore qualifies as
a knowledge selector. However, the dashboard, as shown in
Fig. 2, allows to add new springboard classes.

Based on the selection performed in a springboard, widgets
update their content to visualize selection-specific knowledge.
Developers can add multiple widgets to the dashboard to fit
their knowledge needs. There are three classes of widgets:

• Spot This class allows access to knowledge that is either
related to a point in time, a version of an artifact, or an
event such as a commit. This includes knowledge that
needs to be aggregated over a period of time to reflect
an information value, as long as it can be related to a
reference point.

• Compare This class enables developers to contrast know-
ledge from two different dates or events. This supports
the exploration of two alternative implementations or the
discovery of an optimal solution when choosing between
existing implementation alternatives.

• Range This class supports inspecting the evolution of
knowledge either over a period of time or by aggregating
the knowledge over a collection of events.

Definitive version available at https://doi.org/10.1109/VISSOFT.2017.18

https://doi.org/10.1109/VISSOFT.2017.18

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2017), Copyright IEEE

Decision Knowledge

Code Decision
Button.java: “Use framework …”

Code Decision
Button.java: “Remove this line”

View Decision Components

View Code

Update Decision

3a

3b

3c

Usage Knowledge

56
Commit

Downloads

5
Feature
Usages

7
Individual

Users

Add Widget
or Springboard

Commits

August 3, 2017
Date

Now Time

3

2

1

4 5

1a

2a

2b

1b

Fig. 3. Sketch of the dashboard showing a time springboard 1 and a commit springboard 2 . Both indicate that a commit is selected, depicted by a dashed
circle (1a and 2a). Additional filters can be applied to the springboards (1b and 2b). Spot widgets for decision knowledge 3 and usage knowledge 4
show knowledge related to the selection. Further widgets and springboards can be added using a dedicated button 5 .

As indicated in Fig. 2, both compare and range widgets are
a composite of the spot widget, which represents a leaf widget.
This enables the creation of complex widgets, such as com-
paring more than two alternatives at the same time. Moreover,
for usage knowledge, we envision widgets to compare current
usage knowledge with potential results after a change. This
allows to assess the effect of changes without applying them.

Widgets are implemented independent of the knowledge
source as described in Fig. 1. Every instance of a widget
conforms to a defined interface visualizing specific knowledge,
such as usage knowledge or decision knowledge. Additional
sub-classes enable widgets to amplify this knowledge.

We suggest a grid-based layout for the dashboard as indi-
cated in Fig. 3. The time springboard (Fig. 3- 1) and commit
springboard (Fig. 3- 2) occupy fixed positions and cannot
be removed. Additional springboards and widgets are hand-
picked by developers from a list of available widgets and added
to the dashboard (Fig. 3- 5). Widgets can be moved and resized
within the dashboard grid. This provides developers with the
flexibility to adjust the dashboard to their needs.

We pose that the consideration of usage and decision know-
ledge benefits the development process and software quality.
For instance, relating an increase in positive user feedback
to an implementation proposal might accelerate the decision-
making process. Likewise, a drop in a feature usage indicates
users’ disapproval, an important basis for decision-making
towards the users’ needs. The joint visualization facilitates the
discovery and utilization of such relations.

B. Springboards

Springboards are the main interaction components in the
dashboard. They allow to specify the knowledge visualized in
widgets, similar to the grep command in Linux. Springboards
are distinguished by their perspective on the software project.
We propose three springboards, namely a commit, code, and

time springboard as depicted in Fig. 2, while additional spring-
boards are possible. In addition, springboard filters provide
the possibility to further detail the selection. For example,
the springboard filter in Fig. 3- 2b could be used to highlight
commits that concern a particular decision.

We sketch the commit springboard in Fig. 3- 2 . Black
lines and circles indicate existing branches and commits,
respectively. Open branches and related commits are colored.

Clicking on a commit selects it as a reference point,
indicated by a dashed circle around it (Fig. 4- 1). This notifies
all spot widgets to update their content accordingly. Clicking
on a branch, in particular on a line between two commits,
selects the branch as a period of time or a collection of
events (Fig. 4- 2). This notifies all range widgets to update
their content accordingly. Multiple commits can be selected by
pressing the option key (Fig. 4- 3). This notifies all compare
widgets to update their content accordingly.

The time springboard in Fig. 3- 1 works similar to the
commit springboard. Commits are represented as circles and
distributed horizontally along a timeline. However, in con-
trast to the commit springboard, the time springboard uses
timestamps as the main viewpoint. Hence, it is able to select
knowledge that is not introduced by or bound to a specific
commit: black triangles represent decisions that were made at
a specific point in time. In case decisions are documented in
the commit message or as code comments, a triangle is added
around the related commit circle as shown in Fig. 3- 1a .

1 2 3 Option key pressed

Fig. 4. Commit springboard showing 1 one commit selected, 2 range of
commits selected, and 3 two commits selected.

Definitive version available at https://doi.org/10.1109/VISSOFT.2017.18

https://doi.org/10.1109/VISSOFT.2017.18

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2017), Copyright IEEE

Decision Knowledge

Decision

Constraint

Solution

Argument

Problem Solution

Argument

Argument

Usage Knowledge

10
12

15

19

Add reason

Commits

D
ow

nl
oa

ds

1

4a

2 3

4
4b 4c

Fig. 5. 1 Range usage knowledge widget showing commit downloads. 2 Compare decision knowledge widget showing a decision at two different points
in time. Dashed lines indicate earlier decision components. 3 Initiate a pull request by dragging a commit. 4 Trigger additional actions based on a commit.

C. Usage Knowledge Widgets

Usage knowledge widgets visualize knowledge that relates
to the usage of a software artifact. The dashboard allows to
inspect both explicit and implicit feedback given by users.

Existing approaches to visualize explicit feedback can be
integrated into the widgets: as introduced by Guzman et al.,
a spot usage knowledge widget could provide a rating distri-
bution or a sentiment distribution [4]. The dashboard extends
their approach by allowing to select the reference point of the
visualized knowledge using springboards.

CSE is characterized by its high frequency of iterations.
Therefore, visualizing implicit user feedback is of great inter-
est, since this kind of knowledge can be inferred directly from
usage, without the need to wait for explicit feedback such as
app reviews. As shown in Fig. 3- 4 , a spot usage knowledge
widget provides insight into a commit, such as knowledge
of the overall number of downloads, the number of feature
usage, or individual users. This knowledge might reveal if a
feature is adopted by users or not. Based on this insight and
in accordance with decision knowledge presented in another
widget, developers can reconsider implementation decisions.

Range usage knowledge widgets provide insight over time
as shown in Fig. 5- 1 . If a branch is selected, its containing
commits are rendered on the x-axis, while for example the
number of commit downloads are shown on the y-axis.

D. Decision Knowledge Widgets

Decision knowledge widgets visualize decisions from the
software lifecycle, for instance regarding requirements or code.
This knowledge is retrieved from various sources, such as issue
trackers, code repositories, or wiki platforms. If required, de-
velopers are provided with tools for the respective knowledge
source to record associations between individual artifacts.

Developers continuously reflect on decisions during CSE.
For example, they might wonder which decisions preceded
or influenced a commit. Decision knowledge widgets enable
developers to spot such decisions (Fig. 3- 3) and to navigate to
the associated artifact (Fig. 3- 3a). We base the visualization of
decisions on the decision documentation model [8]: a decision
contains any number of decision components such as rationale,
the problem to be solved, alternatives, goals, or constraints. For
further insight, they can be viewed in a spot widget, which is
added to the dashboard by developers (Fig. 3- 3b).

Developers might want to update decisions based on infor-
mation retrieved from usage knowledge widgets. As shown
in Fig. 3- 3c , they can replace a decision by an alternative or
incrementally refine it by adding more decision components.

In Fig. 5- 2 , we sketch a compare widget to contrast
decision components at two points in time. Dashed border lines
indicate earlier documented decision components, whereas the
solid border indicates those documented recently.

To better understand changes in decision components over
time, developers utilize range widgets. For example, a range
widget could visualize the evolution of decisions using spiral
curves in which new decision components appear along this
spiral as suggested by Zhi and Ruhe [12].

E. Interaction

In addition to the visualization of existing knowledge, the
dashboard provides the possibility to actively create, trigger,
maintain, and relate knowledge visually.

We suggest that springboards are the main point for in-
teraction. In Fig. 5, we provide examples for this interaction
within the commit springboard. For instance, a pull request,
i. e. the process of merging back code from a feature branch
into the master branch, could be achieved by dragging a
commit onto a branch as sketched in Fig. 5- 3 . A popup
might ask for background information on merging the code in
question. We do not intend to replace existing tools for these
interactions. Instead, by providing an additional way to trigger
these interactions, the dashboard allows developers to add
knowledge in a convenient way. In particular, this facilitates
the collection of knowledge and enhances its likelihood.

In Fig. 5- 4 , we illustrate actions that might be triggered
from a commit: attach additional knowledge (Fig. 5- 4a) or
set up a new widget for a detailed analysis (Fig. 5- 4b). We
envision that knowledge attachment is supported by knowledge
inference techniques. For example, the documentation of de-
cisions concerning code changes can be supported by their
automatic summarization as done by Linares-Vásquez et al.
[13]. Furthermore, springboards can serve as an interaction
point to end users: for instance, feedback can be proactively
requested (Fig. 5- 4c). Thereby, users can be invited to use
a new build from a commit. At the same time, a new usage
knowledge widget could be added to the dashboard that keeps
track of the feedback results or visualizes the users’ behavior.

Definitive version available at https://doi.org/10.1109/VISSOFT.2017.18

https://doi.org/10.1109/VISSOFT.2017.18

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2017), Copyright IEEE

V. DISCUSSION

We discuss the dashboard and its visualization approach on
the basis of our four goals, namely to enable developers to
follow, reflect, interact, and react on knowledge.

CSE is accompanied by activities that lead to constant
change, which is reflected in branching strategies. The dash-
board allows developers to visually follow code changes,
especially the ones they have not been involved in.

An important goal of the dashboard is to allow the reflec-
tion on knowledge. By using springboards and widgets the
developers are able to reflect on knowledge and knowledge
relations. This enables them to understand the reasons for
the current state of the software artifact. However, a widget’s
expressiveness depends on the quality of the widget’s visual-
ization. Therefore, we will investigate on metrics that capture
the knowledge content of a widget. For instance, the number
of visual elements required to express a widget’s content could
be considered for this purpose. Still, it is up to the developers’
capability of discovering correlations between the knowledge
visualized in the widgets. To support inexperienced developers,
it might be helpful to allow experienced developers to link
widgets that have proven to be valuable in joint usage.

Developers are encouraged to refine existing knowledge.
We proposed first ideas to allow an intuitive and convenient
way of interaction to connect and add new knowledge using
the springboards. Still, we are investigating other concepts to
enrich existing knowledge within the dashboard.

This leads to the goal of enabling developers to react
to reports on knowledge gaps and missing links that were
detected automatically. Our visualization proposals rely on
structured knowledge sets. In real CSE environments, the data
might not be well-structured: for instance, branch relations
might become complex and difficult to understand [11]. We
imagine utilizing automatic approaches that support developers
to understand knowledge, detect missing knowledge elements,
and apply a hybrid approach to resolve problems.

VI. CURRENT AND FUTURE WORK

As part of a case study with practitioners from industry,
we are currently conducting interviews to further investigate
their needs on usage and decision knowledge. Based on these
results, we will refine the concepts presented in this paper.

We plan to realize the dashboard on a prototypical basis
and add support for various CSE tooling platforms. The
prototype will be evaluated within a capstone course at the
Technical University of Munich in which up to 12 development
teams consisting of seven to ten students work on a software
project that is given by an industrial customer over the
period of one semester [14]. The evaluation will focus on
the dashboard’s feasibility given real development situations
and the acceptance by developers. We will search for metrics
that indicate the dashboard’s support during the development
process, for instance how often developers relied on a specific
widget. We will gather developers’ impressions—for instance
regarding the ease of use or typical working routines—using a
questionnaire at the end of the course for further improvement.

VII. CONCLUSION

We introduced a dashboard that supports developers to
better understand knowledge and knowledge relations in CSE
environments. Therefore, we showed the main components.
We proposed a structure for the dashboard and ideas for the
visualization of the selection and presentation of knowledge.
In particular, we introduced springboards as knowledge se-
lectors and spot, compare, and range widgets for knowledge
presentation. We showed visual instances of these widgets for
usage and decision knowledge. The dashboard is extensible;
additional classes of springboards and widgets can be added
and interactions such as adding, modifying, or combining
knowledge can be triggered. As part of our current and
future work, we study further knowledge needs, investigate
additional ideas, and evaluate a prototypical implementation
of the dashboard in a case study.

ACKNOWLEDGEMENT

This work was supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design
For Future – Managed Software Evolution (CURES project).

REFERENCES

[1] J. Bosch, Continuous Software Engineering: An Introduction. Springer,
2014.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, 2015.

[3] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards
a systematic approach to integrate usage and decision knowledge in
continuous software engineering,” in Proceedings of the 2nd Workshop
on Continuous Software Engineering, 2017, pp. 7–11.

[4] E. Guzman, P. Bhuvanagiri, and B. Bruegge, “Fave: Visualizing user
feedback for software evolution,” in 2014 Second IEEE Working Con-
ference on Software Visualization (VISSOFT), 2014, pp. 167–171.

[5] L. Leiva, “Automatic web design refinements based on collective user
behavior,” in CHI ’12 Extended Abstracts on Human Factors in Com-
puting Systems, 2012, pp. 1607–1612.

[6] L. Lee and P. Kruchten, “A tool to visualize architectural design deci-
sions,” in Quality of Software Architectures. Models and Architectures:
4th International Conference on the Quality of Software-Architectures,
S. Becker, F. Plasil, and R. Reussner, Eds. Springer, 2008, pp. 43–54.

[7] M. Shahin, P. Liang, and M. R. Khayyambashi, “Improving under-
standability of architecture design through visualization of architectural
design decision,” in Proceedings of the 2010 ICSE Workshop on Sharing
and Reusing Architectural Knowledge - SHARK ’10, 2010, pp. 88–95.

[8] T.-M. Hesse, A. Kuehlwein, and T. Roehm, “Decdoc: A tool for
documenting design decisions collaboratively and incrementally,” in
Proceedings of the 1st International Workshop on Decision Making in
Software ARCHitecture, 2016, pp. 30–37.

[9] J., C. Anslow, and F. Maurer, “Information visualization for agile
software development,” in 2014 Second IEEE Working Conference on
Software Visualization (VISSOFT), 2014, pp. 157–166.

[10] L. Alperowitz, D. Dzvonyar, and B. Bruegge, “Metrics in agile project
courses,” in Proceedings of the 38th International Conference on Soft-
ware Engineering Companion, 2016, pp. 323–326.

[11] S. Elsen, “Visgi: Visualizing git branches,” in 2013 First IEEE Working
Conference on Software Visualization (VISSOFT), 2013, pp. 1–4.

[12] J. Zhi and G. Ruhe, “Devis: A tool for visualizing software document
evolution,” in 2013 First IEEE Working Conference on Software Visu-
alization (VISSOFT), 2013, pp. 1–4.

[13] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in 37th IEEE International Conference on Software Engineering, 2015,
pp. 709–712.

[14] B. Bruegge, S. Krusche, and L. Alperowitz, “Software engineering
project courses with industrial clients,” ACM Transactions on Computing
Education, vol. 15, no. 4, pp. 17:1–17:31, 2015.

Definitive version available at https://doi.org/10.1109/VISSOFT.2017.18

https://doi.org/10.1109/VISSOFT.2017.18

	Introduction
	Related Work
	Knowledge Preparation
	Knowledge Visualization
	Dashboard Overview
	Springboards
	Usage Knowledge Widgets
	Decision Knowledge Widgets
	Interaction

	Discussion
	Current and Future Work
	Conclusion
	References

